

Logarithms

8.1 INTRODUCTION

Logarithms are used to make the long and complicated calculations easy.

Consider $3^4 = 81$, this is the exponential form of representing relation between three numbers 3, 4 and 81. Now the same relation between 3, 4 and 81 can be written as

 $\log_3 81 = 4$ (read as : logarithm of 81 at base 3 is 4).

Thus:

$$3^4 = 81 \iff \log_3 81 = 4$$

Definition: If a, b and c are three real numbers such that $a \ne 1$ and $a^b = c$ then b is called logarithm of c at the base a and is written as $\log_a c = b$; read as \log of c at the base a is b.

$$a^b = c \iff \log_a c = b$$

2 INTERCHANGING

(Logarithmic form vis-à-vis exponential form)

 $a^b = c$ is called the *exponential form*

and, $\log_a c = b$ is called the *logarithmic form*.

$$2^{-3} = 0.125$$

[Exponential form]

 \Rightarrow log of 0.125 to the base 2 = -3

$$\log_2 0.125 = -3$$

[Logarithmic form]

$$\log_{64} 8 = \frac{1}{2}$$

[Logarithmic form]

$$\Rightarrow$$
 log of 8 to the base 64 = $\frac{1}{2}$

$$(64)^{\frac{1}{2}} = 8$$

[Exponential form] and so on.

Similarly:

If x is positive;

(iii)
$$x^0 = 1 \implies \log_x 1 = 0$$
 i.e. log of 1 to the base $x = 0$

In general; the logarithm of 1 to any base is zero.

i.e.
$$\log_5 1 = 0$$
; $\log_{10} 1 = 0$; $\log_a 1 = 0$ and so on.

(iv)
$$x^1 = x \Rightarrow \log_x x = 1$$
 i.e. $\log x$ to the base $x = 1$

In general, the logarithm of any number to the same base is always one.

i.e.
$$\log_5 5 = 1$$
; $\log_{10} 10 = 1$; $\log_a a = 1$ and so on.

Find: (i) the logarithm of 1000 to the base 10. 1

(ii) the logarithm of $\frac{1}{9}$ to the base 3.

Solution:

Let $\log_{10} 1000 = x \implies 10^x = 1000$ (i) \Rightarrow $10^x = 10^3 \Rightarrow x = 3$

 $\log_{10} 1000 = 3$

Ans.

Let $\log_3 \frac{1}{9} = x \implies 3^x = \frac{1}{9}$ (ii) \Rightarrow $3^x = 3^{-2} \Rightarrow x = -2$

 $\therefore \log_3 \frac{1}{9} = -2$

Ans.

2 Find x, if: (i) $\log_2 x = -2$ (ii) $\log_4 (x + 3) = 2$

(iii) $\log_{x} 64 = \frac{3}{2}$

Solution:

 $\log_2 x = -2 \quad \Rightarrow \quad 2^{-2} = x$ (i)

Ans.

(ii)

Ans.

 $\log_x 64 = \frac{3}{2} \quad \Rightarrow \quad x^{\frac{3}{2}} = 64$ (iii)

 \Rightarrow $x = (64)^{\frac{2}{3}} = (2^6)^{\frac{2}{3}} = 2^4 = 16$

Ans.

EXERCISE 8(A)

1. Express each of the following in logarithmic form:

(i) $5^3 = 125$ (ii) $3^{-2} = \frac{1}{9}$

(iii) $10^{-3} = 0.001$ (iv) $(81)^{\frac{3}{4}} = 27$

2. Express each of the following in exponential form:

(i) $\log_{8} 0.125 = -1$ (ii) $\log_{10} 0.01 = -2$

(iii) $\log_a A = x$

(iv) $\log_{10} 1 = 0$

3. Solve for $x : \log_{10} x = -2$.

4. Find the logarithm of:

(i) 100 to the base 10

(ii) 0.1 to the base 10

(iii) 0.001 to the base 10

(iv) 32 to the base 4

(v) 0.125 to the base 2

(vi) $\frac{1}{16}$ to the base 4

(vii) 27 to the base 9

(viii) $\frac{1}{81}$ to the base 27

5. State, true or false:

(i) If $\log_{10} x = a$, then $10^x = a$.

(ii) If $x^y = z$, then $y = \log_2 x$.

(iii) $\log_2 8 = 3$ and $\log_8 2 = \frac{1}{3}$.

6. Find x, if:

(i) $\log_3 x = 0$ (ii) $\log_x 2 = -1$

(iii) $\log_9 243 = x$ (iv) $\log_5 (x - 7) = 1$

(v) $\log_4 32 = x - 4$ (vi) $\log_7 (2x^2 - 1) = 2$

7. Evaluate:

(i) $\log_{10} 0.01$

(ii) $\log_2 (1 \div 8)$

(iii) log₅ 1 (iv) log₅ 125

(v) $\log_{16} 8$ (vi) $\log_{0.5} 16$

8. If $\log_a m = n$, express a^{n-1} in terms of a and m.

 $\log_a m = n \implies a^n = m$ $\implies a^{n-1} = \frac{a^n}{a^n} = \frac{m}{a^n}$

9. Given $\log_2 x = m$ and $\log_5 y = n$.

(i) Express 2^{m-3} in terms of x.

(ii) Express 5^{3n+2} in terms of y.

0. If $\log x = a$ and $\log y = a$, write 72^a in

10. If $\log_2 x = a$ and $\log_3 y = a$, write 72^a in terms of x and y.

11. Solve for $x : \log(x - 1) + \log(x + 1) = \log_2 1$.

12. If $\log(x^2 - 21) = 2$, show that $x = \pm 11$.

8.3 LAWS OF LOGARITHM WITH USE

First Law (Product Law):

The logarithm of a product at any non-zero base is equal to the sum of the logarithms of its factors at the same base.

i.e. $\log_a (m \times n) = \log_a m + \log_a n$

 $\log_{r} (m \times n \times p) = \log_{r} m + \log_{r} n + \log_{r} p$ and so on.

Remember: $\log_a (m+n) \neq \log_a m + \log_a n$

Second Law (Quotient Law):

The logarithm of a fraction at any non-zero base is equal to the difference between the logarithm of the numerator minus the logarithm of the denominator, both at the same base.

i.e. $\log_a \frac{m}{n} = \log_a m - \log_a n$

Remember: $\frac{\log_a m}{\log_a n} \neq \log_a m - \log_a n. \text{ Also, } \log_a (m-n) \neq \log_a m - \log_a n$

Third Law (Power Law):

The logarithm of a power of a number at any non-zero base is equal to the logarithm of the number (at the same base) multiplied by the power.

i.e. $\log_a(m)^n = n \log_a m$

Corollary: Since $\sqrt[n]{m} = m^{\frac{1}{n}}$

 $\therefore \qquad \log_a \sqrt[n]{m} = \log_a m^{\frac{1}{n}} = \frac{1}{n} \log_a m$

1. Logarithms to the base 10 are known as common logarithms.

2. If no base is given, the base is always taken as 10,

i.e. $\log 8 = \log_{10} 8$; $\log a = \log_{10} a$; $\log 10 = \log_{10} 10$ and so on.

3. $\log_{10} 1 = 0$; $\log_{10} 10 = 1$;

 $\log_{10} 100 = 2 \qquad [\log_{10} 100 = \log_{10} 10^2 = 2\log_{10} 10 = 2 \times 1 = 2]$

Similarly, $\log_{10} 1000 = 3$; $\log_{10} 10000 = 4$ and so on.

8.4 EXPANSION OF EXPRESSIONS WITH THE HELP OF LAWS OF LOGARITHM

Let $y = \frac{a^4 \times b^2}{c^3} \Rightarrow \log y = \log \frac{a^4 \times b^2}{c^3}$

i.e. $\log y = \log(a^4 \times b^2) - \log c^3 \qquad [\because \log \frac{m}{n} = \log m - \log n]$

 $= \log a^4 + \log b^2 - \log c^3 \qquad [\because \log m \times n = \log m + \log n]$ = $4 \log a + 2 \log b - 3 \log c$ [$\because \log m^n = n \log m$]

 $\log y = 4 \log a + 2 \log b - 3 \log c$ is the logarithmic expansion of the

given expression
$$y = \frac{a^4 \times b^2}{c^3}$$

Similarly,

..

$$m = \frac{3^x}{5^y \times 8^z} \implies \log m = \log 3^x - \log (5^y \times 8^z)$$

$$= x \log 3 - [\log 5^y + \log 8^z]$$

$$= x \log 3 - y \log 5 - z \log 8$$

$$\implies \log m = x \log 3 - y \log 5 - z \log 8$$

Conversely:

$$\log V = \log \pi + 2 \log r + \log h - \log 3$$

$$\Rightarrow \log V = \log \pi + \log r^2 + \log h - \log 3$$

$$= \log \frac{\pi r^2 h}{3} \Rightarrow V = \frac{\pi r^2 h}{3}$$

3 Express $\log_{10} \sqrt[5]{108}$ in terms of $\log_{10} 2$ and $\log_{10} 3$.

Solution:

$$\begin{aligned} \log_{10} \sqrt[5]{108} &= \log_{10} (108)^{\frac{1}{5}} & \left[\sqrt[n]{m} = m^{\frac{1}{n}} \right] \\ &= \frac{1}{5} \log_{10} 108 & \left[\log_{10} n^m = m \log_{10} n \right] \\ &= \frac{1}{5} \log_{10} (2^2 \times 3^3) & \left[108 = 2 \times 2 \times 3 \times 3 \times 3 = 2^2 \times 3^3 \right] \\ &= \frac{1}{5} \left[\log_{10} 2^2 + \log_{10} 3^3 \right] & \left[\log_{10} m \times n = \log_{10} m + \log_{10} n \right] \\ &= \frac{1}{5} \left[2\log_{10} 2 + 3\log_{10} 3 \right] & \text{Ans.} \end{aligned}$$

Express as a single logarithm: $2 + \frac{1}{2} \log_{10} 9 - 2 \log_{10} 5$

Solution:

$$= \log_{10} 100 + \log_{10} 9^{\frac{1}{2}} - \log_{10} 5^{2}$$
 [log₁₀100 = 2; log 9 = log 3² and 2log 5 = log5²]

$$= \log_{10} 100 + \log_{10} 3 - \log_{10} 25$$

$$= \log_{10} \frac{100 \times 3}{25} = \log_{10} 12$$
 [log $a + \log b - \log c = \log \frac{a \times b}{c}$] Ans.

Find x, if: (i)
$$\log_{10}(x+5) = 1$$
.
(ii) $\log_{10}(x+1) + \log_{10}(x-1) = \log_{10}11 + 2\log_{10}3$

Solution:

(i)
$$\Rightarrow \log_{10}(x+5) = \log_{10}10$$

 $\Rightarrow x+5 = 10 \Rightarrow x=5$

Ans.

(ii)
$$\Rightarrow \log_{10}(x+1)(x-1) = \log_{10}11 + \log_{10}3^2$$

 $\Rightarrow \log(x^2-1) = \log(11 \times 9)$

 \Rightarrow

$$x^2 - 1 = 99$$

 $x^2 = 100$ and, $x = 10$

Ans.

6 If $\log 2 = 0.3010$ and $\log 3 = 0.4771$, find the value of :

- (i) log 6
- (ii) log 5
- (iii) $\log \sqrt{24}$

Solution:

٠.

(i)
$$\log 6 = \log 2 \times 3 = \log 2 + \log 3 = 0.3010 + 0.4771 = 0.7781$$

Ans.

(ii)
$$\log 5 = \log \frac{10}{2} = \log 10 - \log 2 = 1 - 0.3010 = 0.6990$$

 $[\because \log 10 = 1]$

 $[24 = 2 \times 2 \times 2 \times 3 = 2^3 \times 3]$

(iii)
$$\log \sqrt{24} = \log (24)^{\frac{1}{2}} = \frac{1}{2} \log (2^3 \times 3)$$
 [
$$= \frac{1}{2} [3 \times \log 2 + \log 3]$$

$$= \frac{1}{2} [3 \times 0.3010 + 0.4771] = 0.69005$$

Ans.

EXERCISE 8(B)

- 1. Express in terms of log 2 and log 3:
 - (i) log 36
- (ii) log 144
- (iii) log 4.5
- (iv) $\log \frac{26}{51} \log \frac{91}{110}$

(v)
$$\log \frac{75}{16} - 2 \log \frac{5}{9} + \log \frac{32}{243}$$

- 2. Express each of the following in a form free from logarithm:
 - (i) $2 \log x \log y = 1$
 - (ii) $2 \log x + 3 \log y = \log a$
 - (iii) a $\log x b \log y = 2 \log 3$
- 3. Evaluate each of the following without using tables:
 - (i) $\log 5 + \log 8 2 \log 2$
 - (ii) $\log_{10} 8 + \log_{10} 25 + 2 \log_{10} 3 \log_{10} 18$
 - (iii) $\log 4 + \frac{1}{2} \log 125 \frac{1}{5} \log 32$

4. Prove that:

$$2 \log \frac{15}{18} - \log \frac{25}{162} + \log \frac{4}{9} = \log 2.$$

5. Find x, if:

$$x - \log 48 + 3 \log 2 = \frac{1}{3} \log 125 - \log 3.$$

- 6. Express $\log_{10} 2 + 1$ in the form of $\log_{10} x$.
- 7. Solve for x:
 - (i) $\log_{10}(x-10) = 1$
 - (ii) $\log (x^2 21) = 2$
 - (iii) $\log (x 2) + \log (x + 2) = \log 5$
 - (iv) $\log (x + 5) + \log (x 5)$ $= 4 \log 2 + 2 \log 3$
- 8. Solve for x:
 - (i) $\frac{\log 81}{\log 27} = x$ (ii) $\frac{\log 128}{\log 32} = x$
 - (iii) $\frac{\log 64}{\log 8} = \log x$ (iv) $\frac{\log 225}{\log 15} = \log x$

$$(i) \frac{\log 81}{\log 27} = x$$

$$\Rightarrow x = \frac{\log 3^4}{\log 3^3} = \frac{4 \log 3}{3 \log 3} = \frac{4}{3}$$
 Ans.

- 9. Given $\log x = m + n$ and $\log y = m n$, express the value of $\log \frac{10x}{y^2}$ in terms of m and n.
- 10. State, true or false:
 - (i) $\log 1 \times \log 1000 = 0$

(ii)
$$\frac{\log x}{\log y} = \log x - \log y$$

(iii) If
$$\frac{\log 25}{\log 5} = \log x$$
, then $x = 2$

- (iv) $\log x \times \log y = \log x + \log y$
- 11. If $\log_{10} 2 = a$ and $\log_{10} 3 = b$; express each of the following in terms of 'a' and 'b':
 - (i) $\log 12$ (ii) $\log 2.25$ (iii) $\log 2\frac{1}{4}$

- (iv) $\log 5.4$ (v) $\log 60$ (vi) $\log 3\frac{1}{8}$
- 12. If $\log 2 = 0.3010$ and $\log 3 = 0.4771$; find the value of :
 - (i) log 12
- (ii) log 1.2
- (iii) log 3-6
- (iv) log 15
- (v) log 25
- (vi) $\frac{2}{3}$ log 8
- 13. Given $2 \log_{10} x + 1 = \log_{10} 250$, find :
 - (i) x
- (ii) $\log_{10} 2x$
- 14. Given 3 log $x + \frac{1}{2} \log y = 2$, express y in term of x.
- 15. If $x = (100)^a$, $y = (10000)^b$ and $z = (10)^c$, find $\log \frac{10\sqrt{y}}{x^2z^3}$ in terms of a, b and c.
- 16. If $3(\log 5 \log 3) (\log 5 2 \log 6)$ = $2 - \log x$, find x.

0

If $\log_{10} 4 = 0.6020$; find the value of :

(i) log₁₀8

(ii) log₁₀2.5

Solution:

If $\log_{10} 4 = 0.6020 \implies 2 \log 2 = 0.6020$ [: $\log 4 = \log 2^2 = 2 \log 2$] $\implies \log 2 = \frac{0.6020}{2} = 0.3010$

(i) $\log_{10} 8 = \log_{10} 2^3$ = $3 \log 2 = 3 \times 0.3010 = 0.9030$

Ans.

(ii) $\log_{10} 2.5 = \log \frac{25}{10} = \log \frac{5}{2} = \log \frac{10}{2 \times 2}$ $= \log 10 - 2 \log 2 = 1 - 2 \times 0.3010 = 0.3980$

Ans.

8

Given $\log_{10} x = a$ and $\log_{10} y = b$.

- (i) Write down 10^{a-1} in terms of x.
- (ii) Write down 10^{2b} in terms of y.
- (iii) If $\log_{10} P = 2a b$; express P in terms of x and y.

Solution:

(i)
$$\log_{10} x = a \qquad \Rightarrow 10^a = x$$

$$10^{a-1} = \frac{10^a}{10^1} = \frac{x}{10}$$

Ans.

(ii) $\log_{10}^{y} = b \qquad \Rightarrow 10^{b} = y$

 $10^{2b} = (10^b)^2 = y^2$ Ans.

(iii) $\log_{10} P = 2a - b$

 $\Rightarrow \qquad \log_{10} P = 2\log_{10} x - \log_{10} y$

 $\Rightarrow \qquad \log P = \log x^2 - \log y \Rightarrow \log P = \log \frac{x^2}{y} \quad \therefore P = \frac{x^2}{y}$ Ans.

EXERCISE 8(C)

1. If $\log_{10} 8 = 0.90$; find the value of :

- (i) log₁₀ 4
- (ii) $\log \sqrt{32}$
- (iii) log 0·125

2. If $\log 27 = 1.431$, find the value of :

- (i) log 9
- (ii) log 300

3. If $\log_{10} a = b$, find 10^{3b-2} in terms of a.

4. If $\log_5 x = y$, find 5^{2y+3} in terms of x.

5. Given: $\log_3 m = x$ and $\log_3 n = y$.

(i) Express 3^{2x-3} in terms of m.

(ii) Write down $3^{1-2y+3x}$ in terms of m and n.

(iii) If $2 \log_3 A = 5x - 3y$; find A in terms of m and n.

6. Simplify:

(i) $\log (a)^3 - \log a$ (ii) $\log (a)^3 + \log a$

7. If $\log (a + b) = \log a + \log b$, find a in terms of b.

8. Prove that:

(i) $(\log a)^2 - (\log b)^2 = \log \left(\frac{a}{b}\right)$. $\log (ab)$

(ii) If $a \log b + b \log a - 1 = 0$, then $b^a \cdot a^b = 10$

9. (i) If $\log (a + 1) = \log (4a - 3) - \log 3$; find a.

(ii) If $2 \log y - \log x - 3 = 0$, express x in terms of y.

(iii) Prove that : $\log_{10} 125 = 3(1 - \log_{10} 2)$.

10. Given $\log x = 2m - n$, $\log y = n - 2m$ and $\log z = 3m - 2n$, find in terms of m and n, the value of $\log \frac{x^2 y^3}{z^4}$.

11. Given $\log_x 25 - \log_x 5 = 2 - \log_x \frac{1}{125}$; find x.

8.5 MORE ABOUT LOGARITHMS

1. Since, $2^3 = 8 \implies \log_2 8 = 3$

Also, $2^3 = 8 \implies 8^{\frac{1}{3}} = 2 \implies \log_8 2 = \frac{1}{3}$

Thus, $\log_2 8 = 3 \text{ and } \log_8 2 = \frac{1}{3} \implies \log_2 8 = \frac{1}{\log_8 2}$

In the same way,

 $5^4 = 625 \implies \log_5 625 = 4$

and, $5^4 = 625 \implies 625^{\frac{1}{4}} = 5 \implies \log_{625} 5 = \frac{1}{4}$

 $\log_{5}625 = 4 \text{ and } \log_{625}5 = \frac{1}{4} \Rightarrow \log_{5}625 = \frac{1}{\log_{625}5}$

Thus, if a and b are two positive numbers

$$\log_b a = \frac{1}{\log_a b} \text{ and } \log_a b = \frac{1}{\log_b a}.$$

2. Since,
$$\log_b a = \frac{1}{\log_a b}$$
 \Rightarrow $\log_b a \times \log_a b = 1$

 $\Rightarrow (i) \log_5 3 \times \log_3 5 = 1$

- (ii) $\log_8 12 \times \log_{12} 8 = 1$
- (iii) $\log_{18} 35 \times \log_{35} 18 = 1$ and so on.
- 3. Since, log of a number at the same base is 1 (one)

$$\log_a a = 1 \implies x \log_a a = x$$
 [On multiplying both the sides by x]
$$\Rightarrow \log_a a^x = x$$

 $\Rightarrow \qquad \text{(i)} \ \log_2 2^5 = 5$

- (ii) $\log_5 5^8 = 8$
- (iii) $\log_8 8^4 = 4$ and so on.
- **4.** $\log_b a = \frac{\log_x a}{\log_x b}$, where a, b and x all are positive.

For example:

$$\log_{100} 1000 = \frac{\log_{10} 1000}{\log_{10} 100}$$

$$= \frac{\log_{10} 10^3}{\log_{10} 10^2} = \frac{3\log_{10} 10}{2\log_{10} 10} = \frac{3 \times 1}{2 \times 1} = \frac{3}{2}$$

- 9 Evaluate:
 - (i) $\log_{125}625 \log_{16}64$
- (ii) $\log_{16} 32 \log_{25} 125 + \log_{9} 27$.

Solution:

(i)
$$\log_{125} 625 - \log_{16} 64 = \frac{\log_{10} 625}{\log_{10} 125} - \frac{\log_{10} 64}{\log_{10} 16}$$
 $\left[\because \log_n m = \frac{\log_a m}{\log_a n}\right]$
 $= \frac{\log 5^4}{\log 5^3} - \frac{\log 2^6}{\log 2^4}$ $\left[\because \log_{10} x = \log x\right]$
 $= \frac{4 \log 5}{3 \log 5} - \frac{6 \log 2}{4 \log 2} = \frac{4}{3} - \frac{3}{2} = -\frac{1}{6}$ Ans.

(ii)
$$\log_{16} 32 - \log_{25} 125 + \log_{9} 27$$

= $\frac{\log 32}{\log 16} - \frac{\log 125}{\log 25} + \frac{\log 27}{\log 9}$

$$= \frac{\log 2^5}{\log 2^4} - \frac{\log 5^3}{\log 5^2} + \frac{\log 3^3}{\log 3^2}$$

$$= \frac{5 \log 2}{4 \log 2} - \frac{3 \log 5}{2 \log 5} + \frac{3 \log 3}{2 \log 3}$$

$$= \frac{5}{4} - \frac{3}{2} + \frac{3}{2} = \frac{5}{4} = 1\frac{1}{4}$$

Ans.

If
$$\frac{1}{\log_a x} + \frac{1}{\log_b x} = \frac{2}{\log_c x}$$
, prove that : $c^2 = ab$.

Solution:

Since,
$$\log_b a = \frac{1}{\log_a b} \Rightarrow \frac{1}{\log_a x} = \log_x a$$
, $\frac{1}{\log_b x} = \log_x b$ and $\frac{1}{\log_c x} = \log_x c$

$$\therefore \frac{1}{\log_a x} + \frac{1}{\log_b x} = \frac{2}{\log_c x} \Rightarrow \log_x a + \log_x b = 2 \log_x c$$

$$\Rightarrow \log_x ab = \log_x c^2 \Rightarrow ab = c^2$$
Hence Proved.

EXERCISE 8(D)

- 1. If $\frac{3}{2} \log a + \frac{2}{3} \log b 1 = 0$, find the value of $a^9.b^4$.
- 2. If $x = 1 + \log 2 \log 5$, $y = 2 \log 3$ and $z = \log a \log 5$; find the value of a, if x + y = 2z.
- 3. If $x = \log 0.6$; $y = \log 1.25$ and $z = \log 3 2 \log 2$, find the values of : (i) x + y - z (ii) $5^{x + y - z}$
- 4. If $a^2 = \log x$, $b^3 = \log y$ and $3a^2 2b^3 = 6 \log z$, express y in terms of x and z.
- 5. If $\log \frac{a-b}{2} = \frac{1}{2} (\log a + \log b)$, show that: $a^2 + b^2 = 6ab$.
- 6. If $a^2 + b^2 = 23ab$, show that : $\log \frac{a+b}{5} = \frac{1}{2} (\log a + \log b)$.
- 7. If $m = \log 20$ and $n = \log 25$, find the value of x, so that : $2 \log (x 4) = 2 m n$.
- 8. Solve for x and y; if x > 0 and y > 0: $\log xy = \log \frac{x}{y} + 2 \log 2 = 2$.

- 9. Find x, if:
 - (i) $\log_x 625 = -4$ (ii) $\log_x (5x 6) = 2$.
- 10. If $p = \log 20$ and $q = \log 25$, find the value of x, if $2 \log (x + 1) = 2p q$.
- 11. If $\log_2(x + y) = \log_3(x y) = \frac{\log 25}{\log 0.2}$, find the values of x and y.
- 12. Given : $\frac{\log x}{\log y} = \frac{3}{2}$ and $\log (xy) = 5$; find the values of x and y.
- 13. Given $\log_{10} x = 2a$ and $\log_{10} y = \frac{b}{2}$.
 - (i) Write 10^a in terms of x.
 - (ii) Write 10^{2b+1} in terms of y.
 - (iii) If $\log_{10}P = 3a 2b$, express P in terms of x and y.
- 14. Solve:

$$\log_5(x+1) - 1 = 1 + \log_5(x-1).$$

15. Solve for x, if:

$$\log_x 49 - \log_x 7 + \log_x \frac{1}{343} + 2 = 0.$$

16. If
$$a^2 = \log x$$
, $b^3 = \log y$ and $\frac{a^2}{2} - \frac{b^3}{3} = \log c$, find c in terms of x and y.

17. Given
$$x = \log_{10}12$$
, $y = \log_4 2 \times \log_{10} 9$ and $z = \log_{10}0.4$, find :

(i)
$$x - y - z$$

(i)
$$x - y - z$$
 (ii) $13^{x - y - z}$

18. Solve for x,
$$\log_x 15\sqrt{5} = 2 - \log_x 3\sqrt{5}$$
.

(i)
$$\log_b a \times \log_c b \times \log_a c$$

(ii)
$$\log_3 8 \div \log_9 16$$

(iii)
$$\frac{\log_5 8}{\log_{25} 16 \times \log_{100} 10}$$

20. Show that:

$$\log_a m \div \log_{ab} m = 1 + \log_a b$$

$$\log_{a}m \div \log_{ab}m = \frac{\log_{a}m}{\log_{ab}m}$$

$$= \frac{\log_{a}ab}{\log_{m}a} \left[\because \log_{b}a = \frac{1}{\log_{a}b} \right]$$

$$= \log_{a}ab \left[\because \frac{\log_{x}a}{\log_{x}b} = \log_{b}a \right]$$

$$= \log_{a}a + \log_{a}b$$

$$= 1 + \log_{a}b$$