Area

1.
2.

3.
()
(i)

. POINTS TO REMEMBER
Equal figures : Two plane figures having equal area are called equal figures.

Congruent figures : Two plane figures having the same shape and size are called congruent .
figures. But two plane figures having equal areas need not be congruent.

Results on Area of polygon regions
Parallelograms on the same base and between the same parallels are equal in area.

The area of a parallelogram is equal to the area of the rectangle on the same base and of the same
altitude i.e. between the same parallels.

Sol. Given ; BD is the diagonal of

(7iii) Triangles are the same base and between the same parallels are equal 1n area.
4. Some more results :
(i) Areaof a| gm = Base x height
| 1 )
(i) Area of a triangle = 7 X Base x height
| | 1 | |
(ii) Area of trapezium = 5 (sum of parallel sides) x height
(iv) Area of rhombus = % x Product of diagonals
5. (i) If a triangle and a parallelogram are on the same base and between the same parallels, then the
- area of triangle is half of the area of the parallellogram.
(if) Parallelograms on equal bases and between the same parallels are equal in area.
EXERQLSE 16 AB =6 cm, CD = 6 cm and BD =8 cm
Q. 1. In the adjoining figure, BD is a diagonal £ABD = ZBDC = 90°
of quad. ABCD. Show that ABCD is a To prove : (i) ABCD is a parallelogram.
parallelogram and calculate the area of (if) Find the area of |jgm ABCD.
| gm ABCD.

Proof : .- ZABD = ZBDC

i (each = 90°)
But these are alternate angles.
. AB || DC
But AB=DC=6cm
". ABCD is a || gm.

6cm B - | Now Area = Base x Altitude

quadrilateral ABCD =6 x 8§ cm? = 48 cm?Ans.
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Q. 2.

Sol.

Sol.

Inal|lgm ABCD, itisgiven that AB=16
cm and the altitudes corresponding to the
sides AB and AD are 6 cm and 8 cm
respectively.

Find the length of AD.
D C

B6cm

A E B
In || gm ABCD, AB = 16 cm, altitudes-
on AB and AD are DE and BF are drawn
andDE =7 cm, BF =8 cm

Area of || gm ABCD = Base x altitude

- =AB x DE
=16 x 6 =96 cm? ..(7)
Again area of || gm = AD x BF
= AD x 8 cm? ..(i)
From (7) and (i7)
8AD=96::>AD=%= 12 cm Ans.

. Find the area of a rhombus, the lengths

of whose diagonals are 18 cm and 24 cm

respectively.
D C
z
d%
A B
Let the first diagonal of rhombus
(dy) =18 cm

and second diagonal (d,) = 24 cm

d xd, 18x24
i oo

=216 cm? Ans.

Area = cm?

. Find the area of a trapezium whose

parallel sides measure 10 cm and 8 cm
respectively and the distance between

these sides 1s 6 cm.

8cm C

D
’
’
|
: Bcm
:
I

- iy i3 10cm B

Sol. In trapezium ABCD

Q. 5.

Sol.

AB || DC and DL L AB
AB=10cm, DC=8 cm

and DL =6 cm

Area of trapezium ABCD

o Sum of parallel sides
7

x height

_ (10+8)
it

18
it x 6= 54 cm? Ans.

Show that the line segment joining the
mid-points of a pair of opposite sides of
a parallelogram, divides it into two equal -

x 6.cm?

. parallelograms.

/17

Given : In || gm ABCD,

P and Q are the mid points of sides AB
and DC respectively. PQ is joined.

To prove : APQD and PBCQ are
parallelograms of equal areas.

Proof : -.- P and Q are mid points of AB
and DC respectively.

. AP=PB and DQ=QC

But AB||DC (opposite sides of ||gm)
.. AP || DQ

and AP =DQ

- APQD1s a || gm.

Similarly PBCQ is a || gm.
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-+ || gms APQD and PBCQ are on the
equal bases and between the same
parallel lines.

<. area of || gm APQD = area of || gm
PBCQ

Hence APQD and PBCQ are parallelo-
grams of equal areas.

Q. 6. In the given figure, the area of ll gm
ABCD is 90 cm?. State giving reasons :

(i) ar (||gm ABEF) (i) ar I(AABD)
(iii) ar (ABEF).
C
Sol. Area of || gm ABCD = 90 cm?

AF || BE are drawn and BD and BF are
joined.
. ABEF is a parallelogram.

(/) Now || gm ABCD and || gm ABEF are on
the same base and between the same
parallel lines.

-, area of || gm ABCD = area of || gm
ABEF

_But area of || gm ABCD =90 cm?
-. Area of || gm ABEF =90 cm?

(i7) - BD and BF are the diagonals of || gm
ABCD and || gm ABEF respectively and
diagonals of a || gm bisect it mto two
triangles of equal area.

. Area (AABD) = -l— area (|| gm ABCD)

=~;—3900m =45 cm?

1
(iii) and area (ABEF) = - area (|| gm ABEF)

= % x 90 cm? = 45 cm? Ans.

. Q. 7. In the given figure, the area of AABC is
64 cm?, State giving reasons :

(i) ar (]| gm ABCD)
(i7) ar (rect. ABEF).
D F C E

S — S — ———
!

N
m — o ——

>—

Area of AABC = 64 cm?

| gm ABCD and rectangle ABEF are
drawn on the same base AB of AABC.

(/) In| gm ABCD, CA is its diagonal

. Area (AABC) = l ar (|| gm ABCD)

= Area || gm ABCD = 2 area (AABC)
=2 x 64 cm? = 128 cm?

(i) - || gm ABCD and rectangle are on the
same base AB and between the same
parallels.

.. Area (]| gm ABCD)
= (rectangle ABEF)
. Area (rectangle ABEF)
=128 cm? Ans.

. In the given figure, ABCD is a
quadrilateral. A line through D, parallel
to AC, meets BC produced 1n P.

Prove that : ar (AABP)
= ar (quad. ABCD).

Sol.

Sol. Given : In quad. ABCD, a line through

D is drawn parallel to AC and meets BC
produced in P.
To prove : Area (AABP)

= area (quad. ABCD)
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Q:9;

Sol.

Proof: - AC|| PD

and AACD and AACP are on the same
base AC and between the same parallel
lines.

.. area (AACD) = area (AACP)
Adding area (AABC) both sides,
area (AACD) + area (AABC)

= area (AACP) + area (AABC)
= area (quad ABCD) = area (AABP)
or ar (AABP) = ar (quad. ABCD)
Hence proved.

ABCD is a quadrilateral. If AL L BD
and CM L BD, prove that : ar (quad.

ABCD) = —;—— x BD x (AL + CM).

D

A
Given : In quadrilateral ABCD,

AL 1 BD and CM L BD.
To prove : ar (quad ABCD)

%xBDX(AL+CM)

Proof : AB (AABD) = % base x altitude

=%BD><AL

Again ar (ABCD)
s _12- x BD x CM
Adding (7) and (i7)

ar (AABD) + ar (ABCD)

.. (7)

...(ii)

lBD><CM

1
—TBDKAL+ 7

= ar (quad ABCD)

Q. 10.

()
(ir)

Sol.

()
(#)

Q. 11.

' BD (AL+CM)

2
Hence proved

In the given figure, D is the mid-point of
BC and E 1s any point on AD.

Prove that :

ar (AEBD) = ar (AEDC).

ar (AABE) = ar (AACE).
A

B D C
Given : In AABC, D is mid point of BC
and E is any point on AD.

To prove : (V) ar (AEBD) = ar (AEDC).
(ii) ar (AABE) = ar (AACE).
Proof : In AABC,

“AD is the median of the triangle

. ar (AABD) = ar (AACD)
Again in AEBC,
ED is the median of AEBC
. ar (AEBD) = ar (AEDC)
Subtracting (i7) from (7)
ar (AABD) — ar (AEBD)

= ar (AACE) - ar (AECB)
= ar (AABE) = ar (AACE)
Hence proved.

...(71)

In the given figure, D is the mid-point of
BC and E is the mid-point of AD.

A
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Sel.

Q. 12.

- Prove that : ar (AABE)

= % ar (AABC).

Given : In AABC, D 1s mid point of BC
and E 1s mid point on AD. CE and BE
are joined.

To prove : ar (AABE)

midy g ot 1
=5 ar (;ABO).

Proof : In AABC, AD is the median
.. ar (AABD) = ar (AACD)

= -% ar (AABC) ()

Again in AABD, BE is the median
.. ar (AABE) = ar (AEBD)

Il
N ] N

ar (AABD)

1

X 5 ar (AABC) [from (7)]

ar (AABC)

Hence pmved.

In the given figure, a point D is taken on
side BC of AABC and AD is produced
to E, making DE = AD.

Show that : ar (ABEC) = ar (AABC).
A

E |

Sol. Given: In AABC, D is any pointon BC,

AD is joined and produced to E such that

DE = AD. :

BE and CE are joined.

To prove : ar (BEC) = ar (AABC).
P;nnf.z - AD = DE (given)

Q. 13.

Sol.

<. D 1s mid point of AE.

Now 1in AABE, BD is the median

.. ar (ABDE) = ar (AABD) . {7)
Similarly, in AACE, CD is the median ~

.. ar (ACDE) = ar (AACD) ..(77)

- Adding (7) and (i7)

ar (ABDE) + ar (ACDE) = ar (AABD)

+ ar (AACD)
= ar (ABEC) = ar (AABC)
Hence proved.

If the medians of a AABC intersect at G,
show that :

ar (AAGB) = ar (AAGC) = ar (ABGC)

=é‘ ar (AABC)

A

B D C
Given : In AABC, AD, BE and CF are
the medians of the sides BC, CA and AB
respectively intersecting at the point G.

To prove : ar (AAGB) = ar (AAGC)
L4 (ABGC) = % ar (AABC)

Proof : In AABC, AD is the median
.. ar (AABD)=ar (AACD)  ..(i)
Again in AGBC, GD is the median

~. ar (AGBD) = ar (AGCD) ...(i)

| Subtracting (77) from (7)

ar (AABD) - ar (AGBD) = ar (AACD)
— ar (AGCD)

= ar (AAGB) = ar (AAGC) ..(7i0)
Similarly we can prove that
ar (AAGC) = ar (ABGC) ..(iv)

From (ii7) and )



Q. 14.

Sol.

Q. 15.

ar (AAGB) = ar (AAGC) = ar (ABGC)
But ar (AAGB) + ar (AAGC)

+ ar (ABGC) = ar (AABC)
= ar (AAGB) = ar (AAGC) = ar (ABGC)

1
= *E ar. (AABC)

Hence proved.

D is a point on base BC of a AABC such
that 2 BD = DC.

1
Prove that : ar (AABD) = 3 ar (AABC).

A

B D C

268

Given : In AABC, D is a point on BC

such that 2 BD = DC.

1
To prove : ar (AABD) = 3 ar (AABC).

Proof : In AABC,

BD 1
S G A 2

- 2BD =DC.

=BD:DC=1¢2
:. ar (AABD) : ar (AADC)=1:2
But ar (AABD) + ar (AADC)
= ar (AABC)
= ar (AABD) + 2 ar (AABD)
= ar (AABC)
= 3 ar (AABD) = ar (AABC)

— ar (AABD) = -15- ar (AABC)

Hence proved.

In the given figure, AD is a median of
AABC and P is a point on AC such that :

ar (AADP) : ar (AABD) =2 : 3.
Find : (i) AP : PC

(ii) ar (APDC) : ar (AABC).

Sol. Given : In AABC, AD is median of the

(#1)

(i) Now Z(APDC) 1

B D C

triangle, P is a point on AC such that :
ar (AADP) : ar (AABD) =2 : 3,

now we have

To find : (?) AP : PC

ar (APDC) : ar (AABC).

In AABC, AD is the median

.. ar (AABD) = ar (AADC)
-~ ar (AADP) : ar (AABD)=2:3
— ar (AADP) : ar (AADC) =2 :3

[from (7)]
= ar (AADC) : ar (AADP)=3 :2
ar(AADC) 3
= Tar(AADP) 2
o ar (AADC) _1=1_1
ar (AADP) 2

(Substracting 1 from both sides)
ar (AADC) — ar (AADP) 1
ar (AADP) .
ar (AADP) 2
=N SR (APDCY 1
— ar (AADP): ar (APDC)=2:1
;. AP PC=2:1
ar (AADP) 2

=2

...(7M)

(from (7))
Adding 1 both sides, we get

ar (40 +1= 241
ar (APDC) 1

ar (AADP) + ar (APDC) " 2 1
ar (APDC) L+
ar(AADC) 3

ar (APDC) 1

(8

& |
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Q. 16.

But ar (AADC) = ar (AABD)

[from (7)]

ar(AADB) 3
ar(APDC) 1
+ ar(APDC) _ 1
= ar(AABD) 3

But ar(AABD)=—;-aI(ﬂABC) |
~ar(APDC) 1
~ 1 &'
2ar(APDC) 1

= "ar(AABC) 3

arAPDC) . o Vo]
= UlAABC) 3x2 6
Hence ar (APDC) : ar (AABC)=1:6
In the given figure, P is a point on side
BC of AABC such that BP : PC=1:2
and Q is a point on AP such that PQ :
QA=2:3.
Show that ; ar (AAQC) : ar (AABC)

= 24 5
A

B P C

Sol. Given : In AABC, P 1s a point on BC

such that BP: PC=1:2. Q 1s a point on
AP such that PQ : QA =2: 3.

To prove : ar (AAQC) : ar (AABC)
=2:3
Proof : In AABC, P is a point on BC
such that
5] G i e g |
:. ar (AAPB) : ar (AAPC)=1:2
2

_ar (AAPC) = 5 ar (AABC)

Again In AAPC,
Q 1s a point on AP such that PQ : QA
=2:3

= ar (AAQC) : ar (APQC)=3:2

Q1%

Sol.

S, ar (f_EAQD) =

or ar (AAQC) = -—2— ar (AAPC)

=%x%— Xa"r(AABC)
2

g (APBC)

ar(AAQC) -2
= ar(AABC) 5
;. ar (AAQC) :ar (AABC)=2:5

Hence proved.

In the adjoining-figure, ABCD 1s a
parallelogram. P and Q are any ‘two
points on the sides AB and BC
respectively.

Prove that : ar (ACPD) = ar (AAQD).

Given : In || gm ABCD, P and Q are any
two points on the sides AB and BC
respectively. L, '

AQ, DQ, CP and DP are joined.~
To prove : ar (ACPD) = ar (AAQD).

Proof : ACPD and || gm ABCD are on
the same base CD and between the same
parallel lines.

1

». ar (ACPD) = - ar (| gm ABCD) ...(>7)

Similarly, AAQD and- || gm ABCD are
on the same base-AD .and between the
same parallel lines.

-;-‘ ar (|| gm ABCD) ...(ii)



Q. 18.

A

Sol.

(i)

Q. 19.

From (i) and (#7)

ar (ACPD) = ar (AAQD)

Hence proved.

In the adjoining figure, DE || BC.
Prove that : (7) ar (AABE) = ar (AACD)
(i) ar (AOBD) = ar (AOCE)

Given : In AABC, DE || BC

To prove : (i) ar (AABE) = ar (AACD)
(if) ar (AOBD) = ar (AOCE)

Proof : (i) In AABC, DE || BC

ABDE and ACDE are on the same base
DE and between the same parallels.

-, ar (ABDE) = ar (ACDE) ..(7)

Adding ar (AADE) both sides of (i)

ar (ABDE) + ar (AADE)

= ar (ACDE) + ar (AADE)

= ar (AABE) = ar (AACD)

Subtracting ar (ADOE) from both sides

of (i)

ar (ABDE) — ar (ADOE) = ar (ACDE)
—ar (ADOE)

— ar (AOBD) = ar (AOCE)

Hence proved.

In the given figure, ABCD 1is a
parallelogram and P is a point on BC.

Prove that : ar (AABP) + ar (ADPC)

= ar (AAPD)

270

Sol.

Q. 20.

Sol.

9.8 e

Given : In || gm ABCD, P is a point on
BC |
To prove : ar (AABP) + ar (ADPC)

= ar (AAPD)
Construction : From P, draw PQ || AB
or DC

Proof : - OPCD s a || gm and PD is the
diagonal

- ar (ADPC) = ar (AQPD) @)

Similarly ABPQ is a || gm and AP 1s the
diagonal

. ar (AABP) = ar (AAPQ)
Adding () and (77)
ar (ADPC) + ar (AABP)

= ar (AQPD) + ar (AAPQ)
= ar (AABP) + ar (ADPC) = ar (AAPD)
Hence proved.

In the adjoining figure, ABCDE is a
pentagon. BP drawn parallel to AC meets
DC produced at P and EQ drawn parallel
to AD meets CD produced at Q.

Prove that : ar (Pentagon ABCDE)

...(T1)

= ar (AAPQ)

m

-
A*ll'-'
-

350 2 )

Given : In a pentagon ABCDE, AC and
AD are joined. From B, BP || AC and
from E, EQ || AD are drawn to meet CD
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Q. 21.

Sol.

produced on both sides at P and Q Proof : In AADE and ABFC

respectively. AD = BC

To prove : ar (Pentagon ABCDE) {". Opposite sides of a parallelogram
= ar (AAPQ) are equal }

Construction : Given AP and AQ AE =BF -

Proof : .- BP|| AC and AABC and AAPC DE = CF

are on the same base AC and between AADE = ABFC

the same parallel lines. — ar (AADE) = ar (ABFC) 0 :

(- Congruent triangles are
equal 1n area)

Now ar (|| gm ABCD) + ar (|| gm AEFB)
= ar (|| gm EFCD) — ar (AADE)
+ ar (ABFC)
= ar (]| gm EFCD) — ar (AADE)
+ar (AADE) [from (7)]

~. ar (AABC) = ar (AAPC) Wy = ar (|| gm EFCD)

Similarly ar (AADE) = ar (AAPQ) ...(i7) Hence proved.

and ar (AACD) = ar (AACD) ...(iif) Q. 22. In the adjoining figure, ABCD is a
parallelogram and O is any point on its

Adding (7), (i) and (i) diagonal AC.

ar (AABC) + ar (AADE) +ar (AACD) Show that : ar (AAOB) = ar (AAOD).
=ar (AAPC) +ar (AADQ) +ar (AACD)

= ar (AAPQ) = ar (pentagon ABCDE)

Hence proved.

In the adjoining figure, two
parallelograms ABCD and AEFB are
drawn on opposite sides of AB.

Prove that : ar (|| gﬂiABCD) Sol. In || gm ABCD, O is any point on its

+ ar (|| gm AEFB) = ar (|| gm EFCD). ‘diagonal. OB and OD are joined.
To prove : ar (AAOB) = ar (AAOD)
Construction : Join BD which intersects
ACatP
Proof : -.»Diagonals of a || gm bisect each
| other
| E F .. AP=PC and BP=PD
‘Given : || gm ABCD and || gm AEFB are Now in AABD, AP is its median
d;awn on th_e _opposite_ sides of AB. DE - *. ar (AABP) = ar (AADP) o0
and FC are joined. s _ ; _
| Similarly in AOBD, OP is the median
Faprove ;9 gm ABCD) -, ar (AOBP) = ar (AODP) )

+ ar (|| gm AEFB) = ar (|| gm EFCD)



Q. 23.

Sol.

2_72 | ArunDeep’sh Foundation Math 9
Adding (i) and (i) CB produced in Q and the parallelogram
ar (AAPB) + ar (AOBP) = ar (AADP) PBQR is completed.
+ ar (AODP) Prove that : ar (|| gm ABCD)

= ar (AAOB) = ar (AAOD)
Hence proved

In the given figure, XY || BC, BE || CA
and FC||AB. -

Prove that ; ar (AABE) = ar (AACF)

Given : In the figure, XY || BC, BE ||
CA and FC || AB.

To prove : ar (AABE) = ar (AACF)

Proof : AABE and | gm BCYE are on
the same base BE and between the same
parallels

.. ar (AABE) =—;- ar (]| gm BCYE) ...(J)

Similarly ADCF and || gm BCFX are on
the same base CF and between the same
parallels.

“'ar (AACF) =-%- ar (|| gm BCFX) ...(i})

Q. 24.

But || gm BCFX and || gm BCYE are on
the same base BC and between the same
parallels.

-, ar (|| gm BCFX) = ar (|| gm BCYE)
.. (ii7)
From (i), (i) and (iii)
-ar (AABE) = ar (AACF)
Hence proved.

In the given figure, the side AB of || gm
ABCD is produced to a point P. A line
through A drawn parallel to CP meets

= ar (J| gm BPRQ).

Sol. Given : Side AB of || gm ABCD is
produced to P. CP is joined through A, a
line is drawn parallel to CP meeting CB
produced at Q and || gm PBQR is
completed as shown in the figure.

To prove : ar (]| gm ABCD)
= ar (|| gm BPRQ)
Construction : Join AC and PQ.

Proof : AAQC and AAQP are on the
same base AQ and between the same
parallels

- ar (AAQC) = ar (AAQP)

Subtracting ar (AAQB) from both sides, -

ar (AAQC) —ar (MQB) = ar (AAQP)

—ar (AAQB)

— ar (AABC) = ar (ABPQ) D)
But ar (AABC) = -;- ar (|| gm ABCD)
(i)
and ar (ABPQ) = -;—ar (| gm BPRQ)
...(iif)
From (i), (if) and (iii)

2 .%- ar (|| gm ABCD)

1
= — ar (| gm BPRQ)

— ar (| gm ABCD) = ar (| gm BPRQ)

Hence proved.

4 ]'ﬁ.’k

L RY
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Q. 25.

In the adjoining figure, CE is drawn
parallel to DB to meet AB produced at
E. |

Prove that : ar (quad. ABCD)
= ar (ADAE).

Sol.

f

Q. 26.

Given : In the given figure, CE is drawn
parallel to BD which meets AB produced
at E. -

DE is joined.
To prove : ar (quad. ABCD)
= ar (ADAE)
Proof : ADBE and ADBC are on the

same base BD and between the same
parallels.

.. ar (ADBE) = ar (ADBC)

Adding ar (AABD) both sides,

ar (ADBE) + ar (AABD) = ar (ADBC)
+ ar (AABD)

= ar (AADE) = ar (quad ABCD)

=> ar (quad ABCD) = ar (ADAE)

Hence proved.

In the adjoining figure, ABCD is a

parallelogram. AB is produced to a point
P and DP intersects BC at Q.

Prove that : ar (AAPD)
= ar (quad. BPCD).

Sol.

Q. 27.

Sol.

Given : In || gm ABCD, AB is produced
point P and DP intersects BC at Q.

To prove : ar (AAPD) = ar (quad BPCD)

Construction : Join BD.

Proof : ABPD and ABPC are on the same
base BP and between the same parallels.

. ar (ABPD) = ar (ABPC) o \)
In || gm ABCD, BD is its diagonal
. ar (AABD) = ar (ADBC) .. (i1)

Adding (7) and (77)

ar (ABPD) + ar (AABD) = ar (ABPC)
+ ar (ADBC)

= ar (AAPD) = ar (quad BPCD)

Hence proved.

In the adjoining figure, ABCD is a
parallelogram. Any line through A cuts
DC at a point P and BC produced at Q.

Prove that : ar (ABPC) = ar (ADPQ).
B

D : A
Given : ABCD 1s a || gm. A line through

A, drawn which intersects DC at a point
P and BC produced at Q.

To prove : ar (ABPC) = ar (ADPQ)
Construction : Join AC and BP.

Proof : ABPC and AAPC are on the same
base BC and between the same parallels.

. ar (ABPC) = ar (AAPC) ..(7)
Again AAQC and ADQC and on the

same base QC and between the same
parallels.

ar (AAQC) = ar (ADQC) .. (i)
Now ar (ABPC) = ar (AAPC)
[from (7)]
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Q. 28.

= ar (AAQC) — ar (APQC)
= ar (ADQC) - ar (APQC)
[from (77)]
= ar (ADPQ)
Hence proved.

In the adjoining figure, ABCD 1s a
parallelogram. P is a point on BC such
that BP : PC=1 : 2. DP produced meets
AB produced at Q.

Given ar (ACPQ) = 20 cm?,
Calculate : (7) ar (ACDP)
(i7) ar (|| gm ABCD).

Sol.

Given : ABCD is a parallelogram.

P is a point on BC such that BP : PC =1
374

DP is produced to meet AB produced at

Q
ar (ACPQ) = 20 cm?

CQ i1s joined.
~“BP:PC=1":2
. ar (ABPQ) : ar (ACPQ)=1 :2

— ar (ABPQ) = —;- ar (ACPQ)

=~;—><20¢m2=10¢m2

Now in ABPQ and ACPD,
ZBPQ = £ZDPC
(Vertically opposite angles)
ZBQP = ZPDC (alternate angles)
- £ZBPQ ~ACPD
~ ar(ACPD) _ (PC)? 2 (2)? R
1 ar{ABPQ). T BP% - ()% 1 ]

~. ar (ACPD) =4 ar (ABPQ)
=4 x 10 cm? = 40 cm?® Ans.

(ii) ar (ACQD) = ar (ACPD) + ar (ACPQ)

Q. 29.

Sol.

= (40 + 20) cm? = 60 cm?

- But ACQD and || gm ABCD are on the

same base DC and between the same
parallels.

. ar (ACQD) = % ar (]| gm ABCD)

= ar (|| gm ABCD) =2 ar (ACQD)
=2 % 60 cm? = 120 cm? Ans.

In the adjoining figure, ABCD is a
parallelogram. P is a point on DC such
that ar (AAPD) =25 cm? and ar (ABPC)
=15 cm?.

Calculate : (7) ar (]| gm ABCD)

(i) DP : PC.

D P

»

>

L. B
ABCDisa || gm. Pis apoint on DC such
that ar (AAPD) = 25 cm?

and ar (ABPC) = 15 cm?
Through P, draw PQ || AD or BC

D > P C
A Q B
Now in || gm AQPD,
AP is its diagonal
. AP divides it into two triangles equal
in area

e

.

. ar (AAPD) = ar (AAPQ)
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M

Similarly in || gm QBCP,
PB is its diagonal

. ar (ABPC) =ar (APQB)
Adding (7) and (i)
ar (AAPQ) + ar (APQB) = ar (AAPD)

+ ar (ABPC)
= ar (AAPB) = 25 cm? + 15 cm?
= 40 cm? d

Now AAPB and || gm ABCD are on the
same base AB and between the same
parallels.

...(7)

‘. ar (AAPB) = - (|| gm ABCD)

= ar (|| gm ABCD) =2 ar (AAPB)

=2 x 40 cm? = 80 cm?
Now ar (AAPQ) : ar (APQB)=AQ : QB
= ar (AAPD) : ar (ABPC) = DP : PC
= 25cm?=15cm?2=DP:PC
=DP:PC=25:15 (Dividing by 5)
:bjDP :PC=5:3 Ans.

In‘the given figure, AB || DC || EE, AD ||
BE and DE || AE.

Prove that : ar (]| gm DEFH)
= ar (|| gm ABCD).

(#)

Q. 30.

>
E F

Sol. Given : In the figure, AB || DC || EF,
AD || BE and DE || AF.

“To prove : ar (|| gm DEFH)
=ar (|| gm ABCD)

Proof : || gm ABCD and || gm ADGE
are on the same base AD and between
the same parallels.

.. ar (|| gm ABCD) = ar (|| gm ADGE)
(D)
Similarly || gm DEFH and || gm ADEG

are on the same base DE and between
the same parallels.

~ ar (|| gm DEFH) = ar (|| gm ADGE)
(F1)
From (7) and (77)
ar (|| gm ABCD) = ar (|| DEFH)

Hence proved.

~Q-31. In the given figure, squares ABDE and
AFGC are drawn on the side AB and
hypotenuse AC of right triangle ABC and
BH 1 FG.

Prove that :
(7) AEAC = ABAF.
(7) ar (sq. ABDE) = ar (rect. ARHF).

FH G

Sol. Given : Square ABDE and AFGC are

drawn on side AB and hypotenuse AC
of right triangle ABC. BH 1 FG
intersecting AC at R.

To prove : () AEAC = ABAF.

(77) ar (sq. ABCD) = as (rect. ARHF).
Construction : Join BF and CE.
Proof : ZCAE = ZCAB + ZBAE

=/ZCAB+90° ..())
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Similarly ZBAF = ZCAB + ZCAF Q. 32. Construct a quadrilateral ABCD in which

= /CAB + 90° (i) AB =32 cm, BC =28 cm, CD =4 cm,

DA = 4-5 cm and BD = 52 cm. Also

From (7) and (¢) construct a triangle equal in area to this
£CAE = ZBAF quadrilateral.
(i) Now in AEAC and ABAF Sol. Steps of construction :
£CAE = ZBAF (proved) (i) Draw a line segment AB = 3-2 cm.
AE = AB (sides of a square) (ii) With centre A and radius 4:5 cm and
AC=AF (sides of a square) with centre B and radius 5-2 cm, draw
. AEAC = ABAF arcs which intersect each other at D.

(SAS criterion of congruency)
and ar (AEAC) = ar (ABAF)

(ii) Square ABDE and AEAC are on the
same base AE and between the same

parallels.
1
-.-ar (AAEC) = 5 ar (square ABDE) A —— < -
s | -(dti) (iii) Join AD and BD.
Similarly ar (ABAF) (iv) Again, with centre B and radius 2-8 cm,
o) . and with centre D and radius 4 cm, draw
= (reghAKLE) ) two arcs intersecting each other at C.
But ar (AAEC) = ar (ABAF) (v) Join BC and CD. l
(proved) ABCD is the given quadrilateral. 'I
; 1 ar (sq. ABDE) (vi) Produce AB. | |
2 (vii) From C, draw a line parallel to BD
N _;_ ar (rect, ARHF) meeting AB produced at E.

= AR (viii) Join DE.

from (il and iv)] Then, AADE is the required triangle
= ar (sq. ABDE) = ar (rect. ARHF) whose area is equal to the area of the
Hence proved. quadrilateral ABCD.
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