
Quadrilaterals

POINTS TO REMEMBER

- 1. Quadrilateral. A closed four sided figure is called a quadrilateral.
- (i) It has four sides, four vertices, four angles and two diagonals.
- (ii) Sum of its four angles = 360° i.e. $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$.

1. Parallelogram. A quadrilateral in which opposite sides are parallel, is called a parallelogram.

In the given figure, ABCD is a quadrilateral in which AB \parallel DC and AD \parallel BC.

: ABCD is a parallelogram.

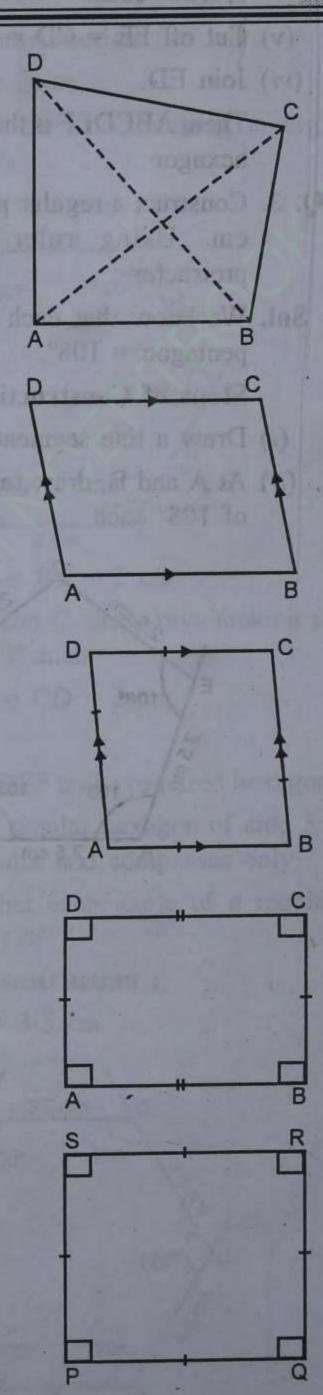
Its opposites sides are equal i.e. AB = CD and AD = BC.

2. Rhombus. A parallelogram having all sides equal, is called a rhombus.

In the given figure, ABCD is a parallelogram in which AB = BC = CD = DA.

- : ABCD is a rhombus.
- 3. Rectangle. A parallelogram each of whose angles measures 90°, is called a rectangle.

In the given figure, ABCD is a rectangle.

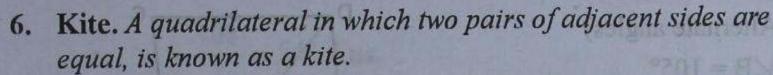

Its opposite sides are equal.

4. Square. A rectangle having all sides equal, is called a square.

In the given figure, PQRS is a square, in which

PQ = QR = RS = SP.

Its each angle is of 90°.



5. Trapezium. A quadrilateral having two parallel opposite sides and two non-parallel opposite sides is called a trapezium.

In the given figure, ABCD is a quadrilateral in which AB || DC and AD is not parallel to BC.

: ABCD is a trapezium.

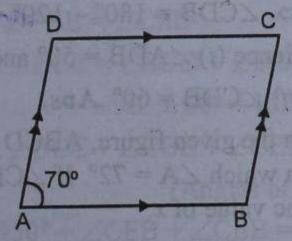
If the non-parallel sides of a trapezium are equal, then it is called an isosceles trapezium.

In the given figure, ABCD is a quadrilateral in which AB = AD and CB = CD.

: ABCD is a kite.

Results on Parallelogram

Theorem 1. In a parallelogram:


- (i) the opposite sides gre equal;
- (ii) the opposite angles are equal;
- (iii) each diagonal bisects the parallelogram.

Theorem 2. The diagonals of a parallelogram bisect each other.

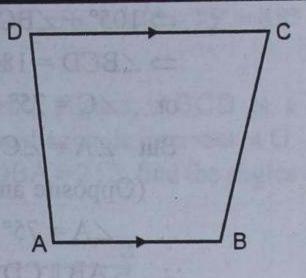
Theorem 3. If a pair of opposite sides of a quadrilateral are parallel and equal, then it is a parallelogram

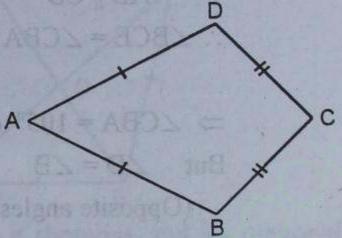
Q. 1. In the given figure, ABCD is a parallelogram in which ∠A = 70°. Calculate ∠B, ∠C and ∠D.

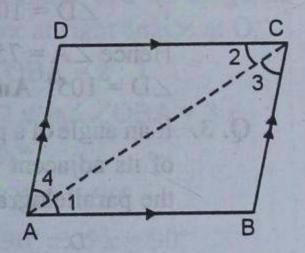
Sol. : ABCD is a parallelogram.

$$\therefore \angle A = \angle C$$
 and $\angle B = \angle D$

$$\therefore \angle C = \angle A = 70^{\circ}$$

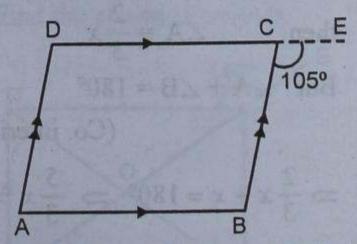

But
$$\angle A + \angle B = 180^{\circ}$$


(Co. interior angles)


$$\Rightarrow 70^{\circ} + \angle B = 180^{\circ}$$

$$\Rightarrow \angle B = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

But
$$\angle D = \angle B$$



$$\angle D = 110^{\circ}$$
Hence $\angle B = 110^{\circ}$, $\angle C = 70^{\circ}$ and $\angle D = 110^{\circ}$ Ans.

Q. 2. In the given figure, ABCD is a parallelogram. Side DC is produced to E and ∠BCE = 105°.

Calculate $\angle A$, $\angle B$, $\angle C$ and $\angle D$.

Sol. ABCD is a parallelogram.

Side DC is produced to E

and
$$\angle BCE = 105^{\circ}$$

But
$$\angle BCE + \angle BCD = 180^{\circ}$$

(Linear pair)

$$\Rightarrow 105^{\circ} + \angle BCD = 180^{\circ}$$

$$\Rightarrow \angle BCD = 180^{\circ} - 105^{\circ} = 75^{\circ}$$

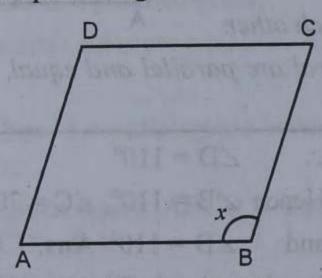
or
$$\angle C = 75^{\circ}$$

But
$$\angle A = \angle C$$

(Opposite angles of a parallelogram)

(Alternate angles)

$$\Rightarrow$$
 \angle CBA = 105° or \angle B = 105°


But
$$\angle D = \angle B$$

(Opposite angles of a parallelogram)

$$\therefore$$
 $\angle D = 105^{\circ}$

Hence
$$\angle A = 75^{\circ}$$
, $\angle B = 105^{\circ}$, $\angle C = 75^{\circ}$, $\angle D = 105^{\circ}$ Ans.

Q. 3. If an angle of a parallelogram is two-third of its adjacent angle, find the angles of the parallelogram.

Sol. In parallelogram ABCD,

Let
$$\angle B = x$$

then
$$\angle A = \frac{2}{3}x$$

But
$$\angle A + \angle B = 180^{\circ}$$

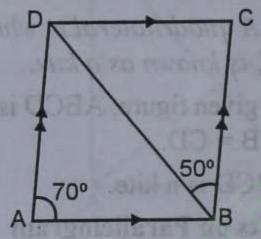
(Co. interior angles)

$$\Rightarrow \frac{2}{3}x + x = 180^{\circ} \Rightarrow \frac{5}{3}x = 180^{\circ}$$

$$\Rightarrow x = 180^{\circ} \times \frac{3}{5} = 108^{\circ}$$

∴
$$\angle B = 108^{\circ} \text{ and } \angle A = \frac{2}{3} \times 108^{\circ} = 72^{\circ}$$

But
$$\angle C = \angle A$$


(Opposite angles of a parallelogram)

Similarly
$$\angle D = \angle B = 108^{\circ}$$

Hence
$$\angle A = 72^{\circ}$$
, $\angle B = 108^{\circ}$, $\angle C = 72^{\circ}$

and
$$\angle D = 108^{\circ}$$
 Ans.

Q. 4. In the adjoining figure, ABCD is a parallelogram in which ∠BAD = 70° and ∠CBD = 50°. Calculate:

Sol. ABCD is a parallelogram. BD is joined.

$$\angle BAD = 70^{\circ} \text{ and } \angle CBD = 50^{\circ}$$

(Alternate angles)

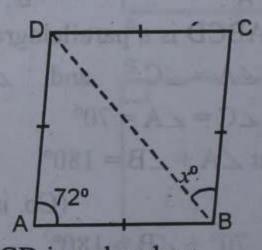
$$=50^{\circ}$$

But
$$\angle BAD + \angle ADC = 180^{\circ}$$

(Co. interior angles)

$$\Rightarrow \angle BAD + \angle ADB + \angle CDB = 180^{\circ}$$

$$\Rightarrow$$
 70° + 50° + \angle CBD = 180°


$$\Rightarrow$$
 120° + \angle CDB = 180°

$$\Rightarrow \angle CDB = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

Hence (i) $\angle ADB = 50^{\circ}$ and

(ii)
$$\angle$$
CDB = 60° Ans.

Q. 5. In the given figure, ABCD is a rhombus in which $\angle A = 72^{\circ}$. If $\angle CBD = x^{\circ}$, find the value of x.

Sol. ABCD is a rhombus.

$$\angle A = 72^{\circ}$$
 and $\angle CBD = x^{\circ}$

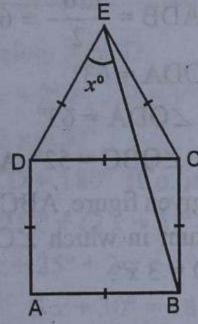
: ABCD is a rhombus

∴ Diagonal BD bisects ∠B and ∠D

$$\therefore$$
 $\angle ABD = \angle CBD = x$

$$\Rightarrow \angle ABC = x + x = 2x$$

But
$$\angle A + \angle B = 180^{\circ}$$


(Co. interior angles)

$$\Rightarrow 72^{\circ} + 2 x = 180^{\circ}$$

$$\Rightarrow 2 x = 180^{\circ} - 72^{\circ} = 108^{\circ}$$

$$x = \frac{108}{2} = 54^{\circ} \text{ Ans.}$$

Q. 6. In the adjoining figure, equilateral $\triangle EDC$ surmounts square ABCD. If $\angle DEB = x^{\circ}$, find the value of x.

Sol. In the figure, ABCD is a square and ΔCDE is an equilateral. BE is joined.

$$\angle DEB = x^{\circ}$$

In
$$\triangle BCE$$
, $BC = CE = CD$

and
$$\angle BCE = \angle BCD + \angle DCE$$

$$=90^{\circ}+60^{\circ}=150^{\circ}$$

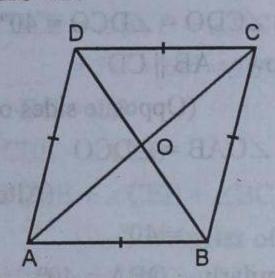
But
$$\angle BCE + \angle CBE + \angle CEB = 180^{\circ}$$

(Angles of a triangle)

$$\Rightarrow$$
 150° + \angle CEB + \angle CEB = $\boxed{180^{\circ}}$

$$\Rightarrow$$
 150° + 2 \angle CEB = 180°

$$\Rightarrow 2 \angle CEB = 180^{\circ} - 150^{\circ} = 30^{\circ}$$


$$\therefore \angle CEB = \frac{30^{\circ}}{2} = 15^{\circ}$$

(Angle of an equilateral triangle)

$$\Rightarrow x^{\circ} + \angle CEB = 60^{\circ}$$

⇒
$$x^{\circ} + 15^{\circ} = 60^{\circ}$$
 ⇒ $x^{\circ} = 60^{\circ} - 15^{\circ} = 45^{\circ}$
∴ $x = 45$ Ans.

Q. 7. In the adjoining figure, ABCD is a rhombus whose diagonals intersect at O. If ∠OAB: ∠OBA = 2:3, find the angles of ΔOAB.

Sol. ABCD is a rhombus and its diagonal bisect each other at right angles at O.

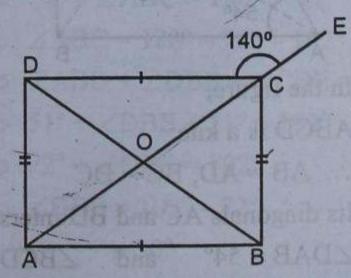
$$\angle$$
OAB: \angle OBA = 2:3

Let
$$\angle OAB = 2x$$
 and $\angle OBA = 3x$

But
$$\angle AOB = 90^{\circ}$$

$$\therefore$$
 \angle OAB + \angle OBA = 90°

$$\Rightarrow$$
 2 x + 3 x = 90° \Rightarrow 5 x = 90°


$$x = \frac{90^{\circ}}{5} = 18^{\circ}$$

$$\therefore \angle OAB = 2 x = 2 \times 18^{\circ} = 36^{\circ}$$

$$\angle OBA = 3 x = 3 \times 18^{\circ} = 54^{\circ}$$

and
$$\angle AOB = 90^{\circ}$$
 Ans.

Q. 8. In the given figure, ABCD is a rectangle whose diagonals intersect at O. Diagonal AC is produced to E and ∠ECD = 140°. Find the angles of ΔOAB.

Sol. ABCD is a rectangle and its diagonals AC and BD bisect each other at O.

Diagonal AC is produced to E such that ∠ECD = 140°

$$\angle ECD + \angle DCO = 180^{\circ}$$
 (Linear pair)

$$\Rightarrow 140^{\circ} + \angle DCO = 180^{\circ}$$

$$\Rightarrow \angle DCO = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

(Half of equal diagonals)

Now : AB || CD

(Opposite sides of a rectangle)

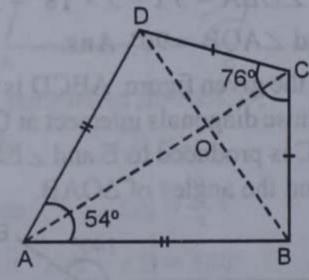
(Alternate angles)

$$=40^{\circ}$$

Similarly ∠OBA = 40°

Now in AAOB

$$\angle$$
OBA + \angle OAB + \angle AOB = 180°


(Angles of a triangle)

$$\Rightarrow$$
 40° + 40° + \angle AOB = 180°

$$\Rightarrow$$
 80° + \angle AOB = 180°

$$\Rightarrow \angle AOB = 180^{\circ} - 80^{\circ} = 100^{\circ} Ans.$$

Q. 9. In the given figure, ABCD is a kite whose diagonals intersect at O. If ∠DAB = 54° and ∠BCD = 76°, calculate: (i) ∠ODA (ii) ∠OBC.

Sol. In the figure,

ABCD is a kite

$$\therefore$$
 AB = AD, BC = DC

Its diagonals AC and BD intersect at O.

$$\angle DAB = 54^{\circ}$$
 and $\angle BCD = 76^{\circ}$

In ΔBCD,

$$\angle CDB = \angle CBD (:: BC = DC)$$

But
$$\angle BCD + \angle CDB + \angle CBD = 180^{\circ}$$

$$\Rightarrow$$
 76° + \angle CBD + \angle CDB = 180°

$$\Rightarrow$$
 76° + 2 \angle CBD = 180°

$$\Rightarrow 2 \angle CBD = 180^{\circ} - 76^{\circ} = 104^{\circ}$$

$$\therefore \angle CBD = \frac{104^{\circ}}{2} = 52^{\circ}$$

Similarly in AABD,

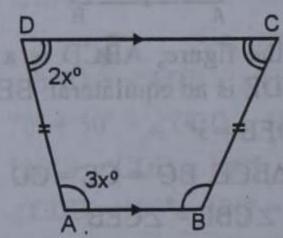
$$\angle DAB = 54^{\circ}$$
 and $\angle ABD = \angle ADB$

$$(:: AB = AD)$$

But
$$\angle DAB + \angle ABD + \angle ADB = 180^{\circ}$$

$$\Rightarrow$$
 54° + \angle ADB + \angle ADB = 180°

$$\Rightarrow$$
 54° + 2 \angle ADB = 180°


$$\Rightarrow 2 \angle ADB = 180^{\circ} - 54^{\circ} = 126^{\circ}$$

$$\therefore$$
 $\angle ADB = \frac{126^{\circ}}{2} = 63^{\circ}$

or
$$\angle ODA = 63^{\circ}$$

and
$$\angle OBC = 52^{\circ}$$
 Ans.

Q. 10. In the given figure, ABCD is an isosceles trapezium in which $\angle CDA = 2 x^{\circ}$ and $\angle BAD = 3 x^{\circ}$.

Find all the angles of the trapezium.

Sol. ABCD is an isosceles trapezium in which AD = BC and AB || CD.

$$\angle BAD + \angle CDA = 180^{\circ}$$

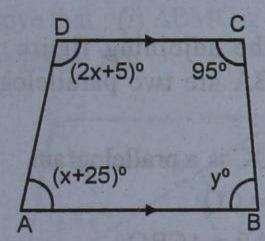
(Co. interior angles)

$$\Rightarrow$$
 3 x + 2 x = 180° \Rightarrow 5 x = 180°

$$x = \frac{180^{\circ}}{5} = 36^{\circ}$$

$$\therefore \angle A = 3 \times = 3 \times 36^{\circ} = 108^{\circ}$$

$$\angle D = 2 x = 2 + 36^{\circ} = 72^{\circ}$$


: ABCD is an isosceles trapezium.

$$\therefore$$
 $\angle A = \angle B$ and $\angle C = \angle D$

and
$$\angle C = 72^{\circ}$$

Hence $\angle A = 108^{\circ}$, $\angle B = 108^{\circ}$,
 $\angle C = 72^{\circ}$, $\angle D = 72^{\circ}$ Ans.

Q. 11. In the given figure, ABCD is a trapezium in which

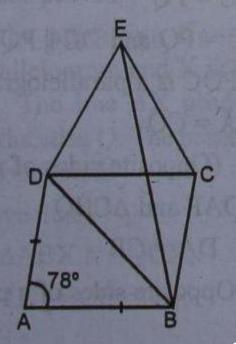
$$\angle A = (x + 25)^{\circ}$$
, $\angle B = y^{\circ}$, $\angle C = 95^{\circ}$ and $\angle D = (2x + 5)^{\circ}$. Find the values of x and y .

Sol. In trapezium ABCD

1. In trapezium ABCD

$$\angle A = (x + 25)^{\circ}, \angle B = y^{\circ}, \angle C = 95^{\circ} \text{ and } \angle D = (2 x + 5)^{\circ}$$
 $\angle A + \angle D = 180^{\circ} \text{ (Co. interior angles)}$
 $\Rightarrow (x + 25)^{\circ} + (2 x + 5)^{\circ} = 180^{\circ}$
 $\Rightarrow x + 25^{\circ} + 2 x + 5^{\circ} = 180^{\circ}$
 $\Rightarrow 3x + 30^{\circ} = 180^{\circ}$
 $\Rightarrow 3x = 180^{\circ} - 30^{\circ} = 150^{\circ}$

$$\therefore \qquad x = \frac{150^{\circ}}{3} = 50^{\circ}$$


Similarly, $\angle B + \angle C = 180^{\circ}$

$$\Rightarrow y + 95^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $y = 180^{\circ} - 95^{\circ} = 85^{\circ}$

Hence $x = 50^{\circ}$, $y = 85^{\circ}$ Ans.

O. 12. In the given figure, ABCD is a rhombus and $\triangle EDC$ is equilateral. If $\angle BAD = 78^{\circ}$, calculate : (i) \angle CBE (ii) \angle DBE.

Sol. (i) ABCD is a rhombus and \triangle EDC is an equilateral triangle,

$$\therefore \angle BCD = \angle A = 78^{\circ}$$

(Opposite angles of a rhombus)

$$\therefore \angle BCE = \angle BCD + \angle DCE$$
$$= 78^{\circ} + 60^{\circ} = 138^{\circ}$$

But
$$\angle$$
CBE + \angle CEB + \angle BCE = 180°

(Sum of angles of a triangle)

$$\Rightarrow 2 \angle CBE = 180^{\circ} - 138^{\circ} = 42^{\circ}$$

$$\therefore \quad \angle CBE = \frac{42^{\circ}}{2} = 21^{\circ}$$

Now in ΔABD,

(ii)
$$AB = AD$$
 (Sides of a rhombus)

But
$$\angle ABD + \angle ADB + \angle BAD = 180^{\circ}$$

$$\Rightarrow \angle ABD + \angle ABD + 78^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 2 \angle ABD + 78° = 180°

$$\Rightarrow 2 \angle ABD = 180^{\circ} - 78^{\circ} = 102^{\circ}$$

$$\therefore \angle ABD = \frac{102^{\circ}}{2} = 51^{\circ}$$

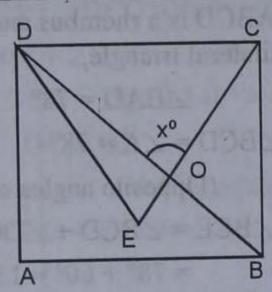
But
$$\angle BAD + \angle ABC = 180^{\circ}$$

(Co. interior angles)

$$\Rightarrow$$
 78° + \angle ABC = 180°

$$\Rightarrow \angle ABC = 180^{\circ} - 78^{\circ} = 102^{\circ}$$

$$\Rightarrow \angle ABD + \angle DBE + \angle CBE = 102^{\circ}$$


$$\Rightarrow$$
 51° + \angle DBE + 21° = 102°

$$\Rightarrow$$
 72° + \angle DBE = 102°

$$\Rightarrow \angle DBE = 102^{\circ} - 72^{\circ}$$
$$= 30^{\circ}$$

and
$$\angle DBE = 30^{\circ}$$
 Ans.

Q. 13. DEC is an equilateral triangle in a square ABCD. If BD and CE intersect at O and $\angle COD = x^{\circ}$, find the value of x.

Sol. ABCD is a square and ΔECD is an equilateral triangle. Diagonal BD and CE intersect each other at O, $\angle COD = x^{\circ}$.

: BD is the diagonal of square ABCD

$$\therefore \angle BDC = \frac{90^{\circ}}{2} = 45^{\circ} \Rightarrow \angle ODC = 45^{\circ}$$

$$\angle ECD = 60^{\circ}$$

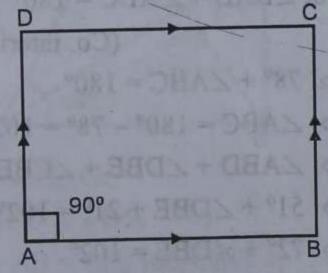
(Angle of equilateral triangle)

or
$$\angle OCD = 60^{\circ}$$

Now in $\triangle OCD$,

$$\angle OCD + \angle ODC + \angle COD = 180^{\circ}$$

(Angles of a triangle)


$$\Rightarrow 45^{\circ} + 60^{\circ} + x^{\circ} = 180^{\circ}$$

$$\Rightarrow 105^{\circ} + x^{\circ} = 180^{\circ}$$

$$x^{o} = 180^{o} - 105^{o} = 75^{o}$$

Hence x = 75 Ans.

Q. 14. If one angle of a parallelogram is 90°, show that each of its angles measures 90°.

Sol. Given: ABCD is a parallelogram and $\angle A = 90^{\circ}$.

> To prove: Each angle of the parallelogram ABCD is 90°.

Proof: $: \angle A = \angle C$

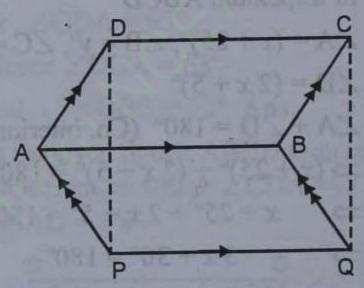
(Opposite angles of a parallelogram)

$$\therefore \angle C = 90^{\circ} \qquad (\because \angle A = 90^{\circ})$$

But $\angle A + \angle D = 180^{\circ}$

(Co. interior angles)

$$\Rightarrow$$
 $\angle D = 180^{\circ} - 90^{\circ} = 90^{\circ}$


and
$$\angle B = \angle D$$

(Opposite angles of a parallelogram)

Hence
$$\angle B = \angle C = \angle D = 90^{\circ}$$

Q.E.D.

- Q. 15. In the adjoining figure, ABCD and PQBA are two parallelograms. Prove that:
 - (i) DPQC is a prallelogram.
 - (ii) DP = CQ.
 - (iii) $\Delta DAP \cong \Delta CBQ$.

Sol. Given: ABCD and PQBA are two parallelogram PD and QC are joined.

To prove: (i) DPQC is a parallelogram.

(ii) DP = CQ (iii) $\Delta DAP \cong \Delta CBQ$.

Proof: (i) DC || AB and AB || PQ

(Given)

:. DC || PQ

Again DC = AB and AB = PQ

(Opposite sides of parallelograms)

 \therefore DC = PQ

 \therefore DC = PQ and DC || PQ

: DPQC is a parallelogram.

(ii) ∴ DA = CQ

(Opposite sides of parallelogram)

(iii) In ΔDAP and ΔCBQ

$$DA = CB$$

{Opposite sides of a parallelogram}

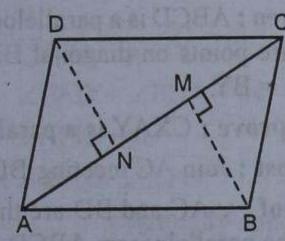
AP = BQ

(Opposite sides of parallelogram)

PD = CQ

(Proved)

∴ ∆DAP ≅ ∆CBQ


(S.S.S. axiom of congruency)

Hence proved.

Q. 16. In the adjoining figure, ABCD is a parallelogram. BM \perp AC and DN \perp AC.

Prove that : (i) $\triangle BMC \cong \triangle DNA$.

(ii) BM = DN.

Sol. Given: ABCD is a parallelogram.

BM \(\text{AC} \) and DN \(\text{AC} \).

To prove:

(i) $\triangle BMC \cong \triangle DNA$

(ii) BM = DN.

Proof: In ΔBMC and ΔDNA

BC = AD

(Opposite sides of a parallelogram)

 $\angle M = \angle N$

(Each 90°)

 $\angle BCM = \angle DAN$

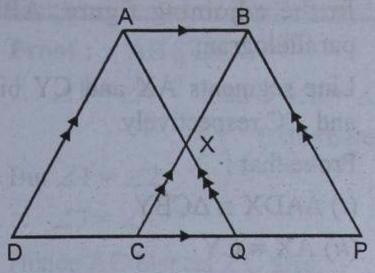
(Alternate angles)

(i) $\therefore \Delta BMC \cong \Delta DNA$

(AAS axiom of congruency)

(ii) : BM = DN

(C.P.C.T.)


Hence proved.

Q. 17. In the adjoining figure, ABCD is a parallelogram and X is the mid-point of BC. The line AX produced meets DC produced at Q. The parallelogram AQPB is completed.

Prove that:

(i) $\triangle ABX \cong \triangle QCX$.

(ii) DC = CQ = QP.

Sol. Given: ABCD is a parallelogram. X is mid-point of BC.

AX is joined and produced to meet DC produced at Q. From B, BP is drawn parallel to AQ so that AQPB is a parallelogram.

To prove : (i) $\triangle ABX \cong \triangle QCX$.

(ii) DC = CQ = QP.

Proof: (i) In ΔABX and ΔQCX,

XB = XC (: X is mid-point of BC)

 $\angle AXB = \angle CXQ$

(Vertically opposite angles)

 $\angle BAX = \angle XQC$ (Alternate angles)

∴ ΔABX ≅ ΔQCX

(AAS axiom of congruency)

Hence proved.

(ii) In parallelogram ABCD,

(Opposite sides of a parallelogram)

Similarly, in parallelogram AQPB

$$AB = QP$$
 ...(ii)

 \therefore From (i) and (ii)

$$DC = QP$$
 ...(iii)

In ΔBCP,

X is mid-point of BC and AQ || BP.

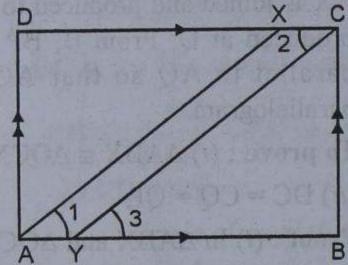
... Q is mid-point of CP.

$$\Rightarrow$$
 CQ = QP ...(ii)

From (iii) and (iv)

$$DC = QP = CQ$$

or
$$DC = CQ = QP$$


Hence proved.

Q. 18. In the adjoining figure, ABCD is a parallelogram.

Line segments AX and CY bisect ∠A and ∠C respectively.

Prove that:

- (i) $\triangle ADX \cong \triangle CBY$
- (ii) AX = CY
- (iii) AX || CY
- (iv) AYCX is a parallelogram.

Sol. Given: ABCD is a parallelogram.

Line segments AX and CY bisect ∠A and ∠C respectively.

To prove : (i) $\triangle ADX \cong \triangle CBY$

- (ii) AX = CY (iii) $AX \parallel CY$
- (iv) AYCX is a parallelogram.

Proof: (i) In ΔADX and ΔCBY,

AD = BC

(Opposite sides of a parallelogram)

 $\angle D = \angle B$

(Opposite angles of the parallelogram)

 $\angle DAX = \angle BCY$

{half of equal angles A and C}

∴ ADX ≅ ∆CBY

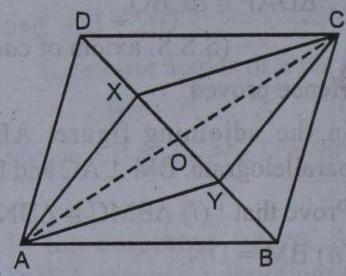
(AAS axiom of congruency)

(ii) \therefore AX = CY (C.P.C.T.)

(iii) $\angle 1 = \angle 2$ (Half of equal angles)

But $\angle 2 = \angle 3$ (Alternate angles)

∴ ∠1 = ∠3


But these are corresponding angles.

.. AX || CY

- (iv) : $AX = CY \text{ and } AX \parallel CY$
 - ... AYCX is a parallelogram.

Hence proved.

Q. 19. In the given figure, ABCD is a parallelogram and X, Y are points on diagonal BD such that DX = BY. Prove that CXAY is a parallelogram.

Sol. Given: ABCD is a parallelogram. X and Y are points on diagonal BD such that DX = BY.

To prove: CXAY is a parallelogram.

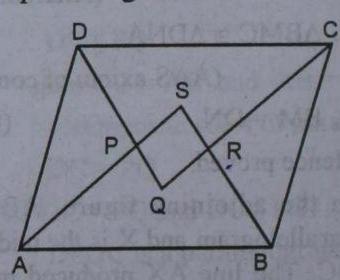
Const: Join AC meeting BD at O.

Proof: : AC and BD are the diagonals of the parallelogram ABCD.

- : AC and BD bisect each other at O.
- :. AO = OC and BO = OD

But DX = BY (Given)

 \therefore DO - DX = OB - BY


 \Rightarrow OX = OY

Now in quadrilateral CXAY, diagonals AC and XY bisect each other at O.

: CXAY is a parallelogram.

Hence proved.

Q. 20. Show that the bisectors of the angles of a parallelogram enclose a rectangle.

Sol. Given: ABCD is a parallelogram.

Bisectors of $\angle A$ and $\angle B$ meet at S and bisectors of $\angle C$ and $\angle D$ meet at Q.

To prove: PQRS is a rectangle.

Proof: $\therefore \angle A + \angle B = 180^{\circ}$

$$\therefore \frac{1}{2} \angle A + \frac{1}{2} \angle B = 90^{\circ}$$

$$\Rightarrow \angle SAB = \angle SBA = 90^{\circ}$$

∴ In ∆ASB,

$$\angle ASB = 90^{\circ}$$

Similarly we can prove that

$$\angle CQD = 90^{\circ}$$

Again
$$\angle A + \angle D = 180^{\circ}$$

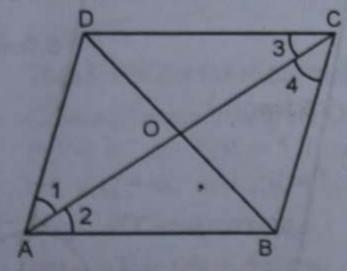
(Co. interior angles)

$$\therefore \frac{1}{2} \angle A + \frac{1}{2} \angle D = 90^{\circ}$$

$$\Rightarrow$$
 $\angle PAD = \angle PDA = 90^{\circ}$

But
$$\angle$$
SPQ = \angle APD

(Vertically opposite angles)


: Similarly we can prove that

: In quadrilateral PQRS, its each angle is of 90°

.. PQRS is a rectangle.

Hence proved.

Q. 21. If a diagonal of a parallelogram bisects one of the angles of the parallelogram, prove that it also bisects the second angle and then the two diagonals are perpendicular to each other.

Sol. Given: In parallelogram ABCD, diagonal AC bisects ∠A. BD is joined meeting AC at O.

To prove : (i) AC bisects $\angle C$.

(ii) Diagonal AC and BD are perpendicular to each other.

Proof: : AB || DC

$$\therefore$$
 $\angle 1 = \angle 4$ and $\angle 2 = \angle 3$

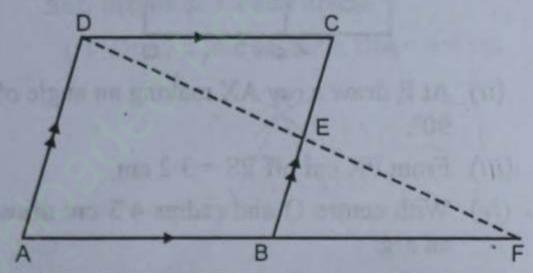
(Alternate angles)

But
$$\angle 1 = \angle 2$$

(Given)

Hence AC bisects ∠C also.

Similarly we can prove that diagonal BD will also bisect the $\angle B$ and $\angle D$.


: ABCD is a rhombus.

But diagonals of a rhombus bisect each other at right angles.

.: AC and BD are perpendicular to each other.

Hence proved.

Q. 22. In the given figure, ABCD is a parallelogram and E is the mid-point of BC. If DE and AB produced meet at F, prove that AF = 2 AB.

Sol. Given: ABCD is a parallelogram. E is mid-point of BC. DE and AB are produced to meet at F.

To prove : AF = 2 AB.

Proof: In ADEC and AFEB

CE = EB (: E is mid-point of BC)

∠DEC = ∠BEF

(Vertically opposite angles)

 $\angle DCE = \angle EBF$ (Alternate angles)

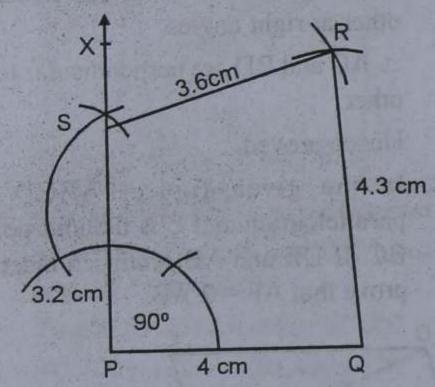
∴ ADEC ≅ AFEB

(AAS axiom of congruency)

(C.P.C.T.)

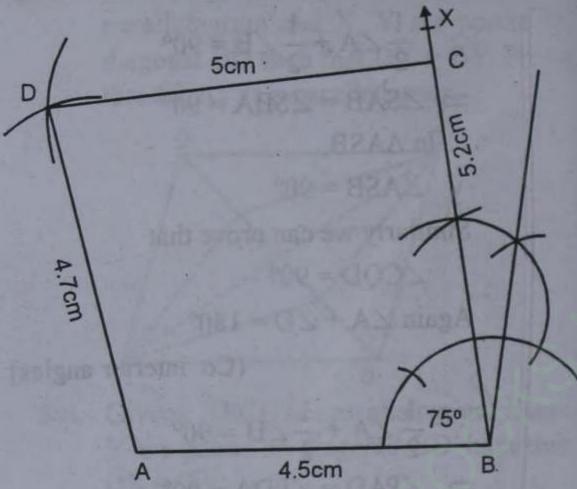
(Opposite sides of a parallelogram)

$$AB = BF$$

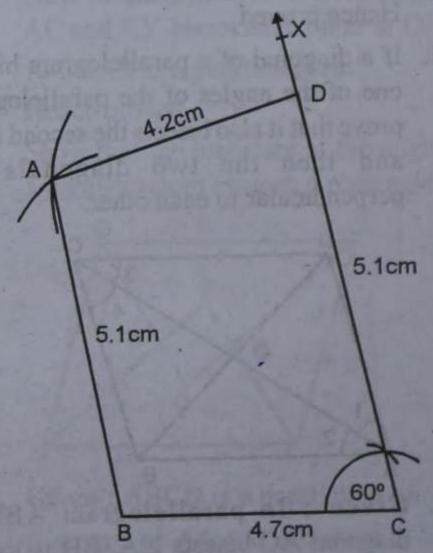

$$AF = AB + BF$$

$$= AB + AB = 2 AB$$

Hence proved.


EXERCISE 15 (B)

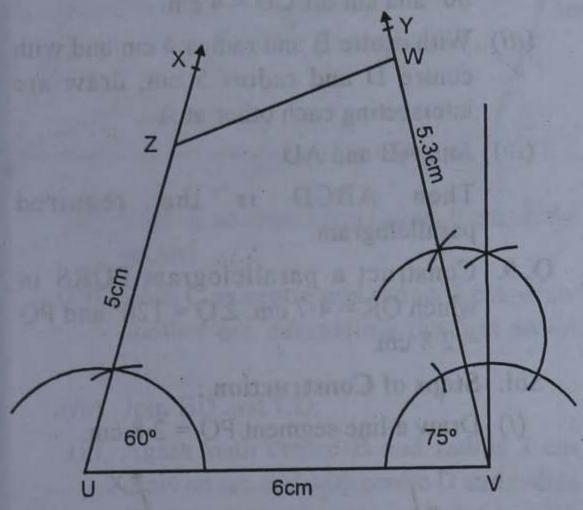
- Q. 1. Construct a quadrilateral PQRS in which PQ = 4 cm, $\angle P = 90^{\circ}$, QR = 4.3 cm, RS = 3.6 cm and SP = 3.2 cm.
 - Sol. Steps of Construction:
 - (i) Draw a line segment PQ = 4 cm.



- (ii) At P, draw a ray AX making an angle of 90°.
- (iii) From PX cut off PS = 3.2 cm.
- (iv) With centre Q and radius 4.3 cm draw an arc.
- (v) With centre S and radius 3.6 cm draw another arc which intersects the first arc at R.
- (vi) Join QR and SR.

 Then PQRS is the required quadrilateral.
- Q. 2. Construct a quadrilateral ABCD in which AB = 4.5 cm, BC = 5.2 cm, CD = 5 cm, DA = 4.7 cm and $\angle ABC = 75^{\circ}$.
 - Sol. Steps of Construction:
 - (i) Draw a line segment AB = 4.5 cm.
 - (ii) At B, draw an arc BX making an angle of 75°.
 - (iii) From BX, cut off BC = 5.2 cm.
 - (iv) With centre C and radius 5 cm draw an arc.

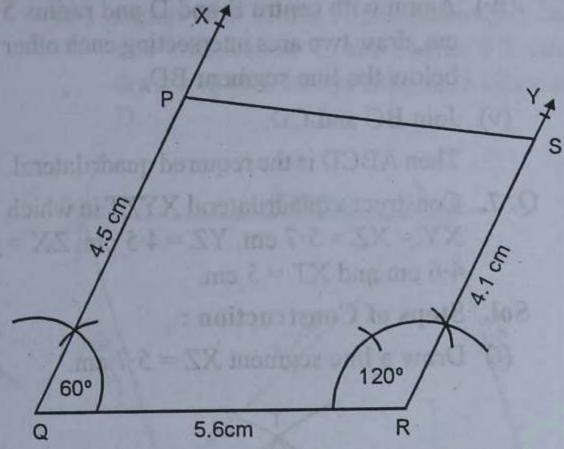
- (v) With centre A and radius 4.7 cm draw another arc which intersects the first arc at D.
- (vi) Join AD and CD.Then ABCD is the required quadrilateral.
- Q. 3. Construct a quadrilateral ABCD in which AB = CD = 5·1 cm, BC = 4·7 cm, DA = 4·2 cm and ∠BCD = 60°.
 - Sol. Steps of Construction:
 - (i) Draw a line segment BC = 4.7 cm.



- (ii) At C, draw an arc CX making an angle of 60° and cut off CD = 5·1 cm.
- (iii) With centre D and radius 4.2 cm, draw an arc.

- (iv) With centre B and radius 5·1 cm, draw another arc intersecting the first arc at A.
- (v) Join AB and AD.Then ABCD is the required quadrilateral.
- Q. 4. Construct a quadrilateral UVWZ in which UV = 6 cm, VW = 5.3 cm, UZ = 5 cm, $\angle U = 60^{\circ}$ and $\angle V = 75^{\circ}$.

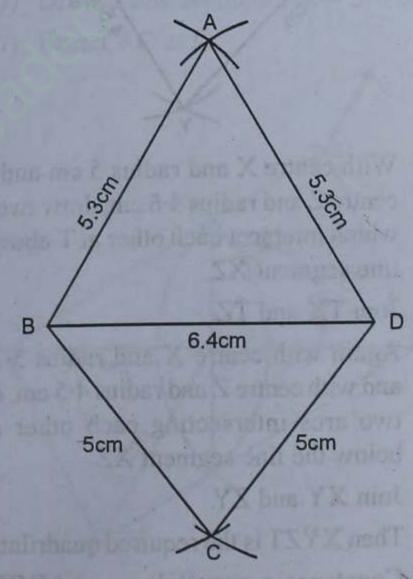
Sol. Steps of Construction:


- (i) Draw a line segment UV = 6 cm.
- (ii) At U, draw a ray UX making an angle of 60°.

- (iii) At V, draw another ray VY making an angle of 75°.
- (iv) From UX, cut UZ = 5 cm and from VY, cut off UW = 5.3 cm.
- (v) Join WZ.Then UVWZ is the required quadrilateral.
- Q. 5. Construct a quadrilateral PQRS in which PQ = 4.5 cm, QR = 5.6 cm, RS = 4.1 cm, $\angle Q = 60^{\circ}$ and $\angle R = 120^{\circ}$

Sol. Steps of Construction:

- (i) Draw a line QR = 5.6 cm.
- (ii) At Q, draw a ray QX making an angle of 60°.
 - (iii) At R, draw another ray RY making an angle of 120°.

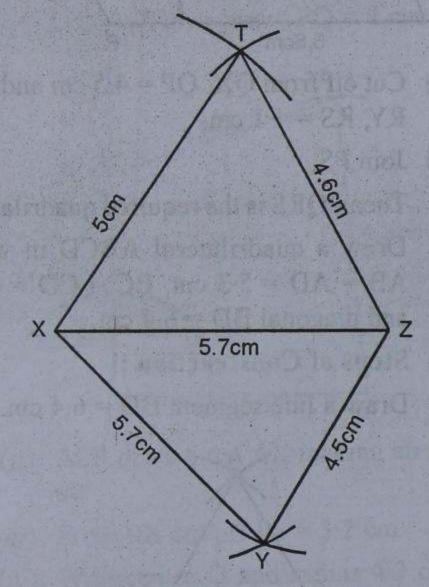


- (iv) Cut off from QX, QP = 4.5 cm and from RY, RS = 4.1 cm.
- (v) Join PS.

 Then PQRS is the required quadrilateral.
- Q. 6. Draw a quadrilateral ABCD in which AB = AD = 5.3 cm, BC = CD = 5 cm and diagonal BD = 6.4 cm.

Sol. Steps of Construction:

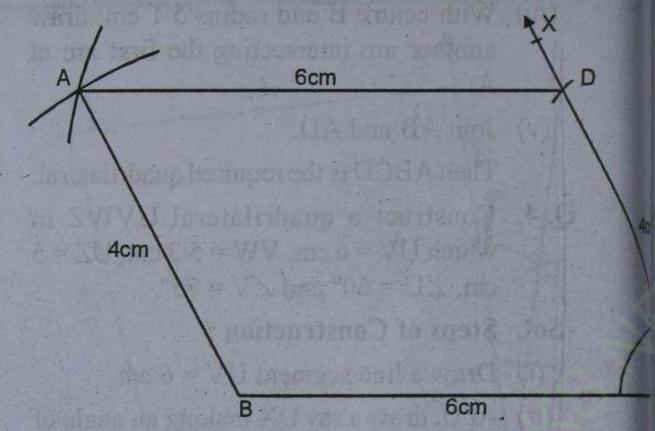
(i) Draw a line segment BD = 6.4 cm.



- (ii) With B and D as centres and radius 5.3 cm each draw two arcs intersecting each other at A above BD.
- (iii) Join AB and AD.

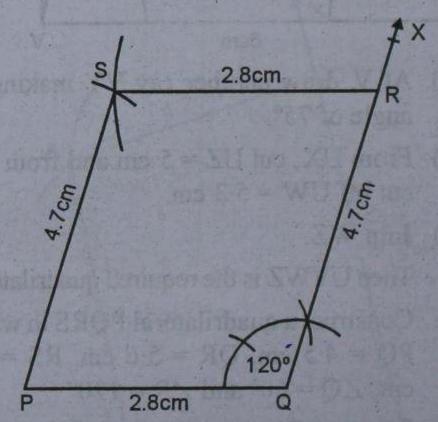
- (iv) Again with centre B and D and radius 5 cm, draw two arcs intersecting each other below the line segment BD.
- (v) Join BC and CD.Then ABCD is the required quadrilateral.
- Q. 7. Construct a quadrilateral XYZT in which XY = XZ = 5.7 cm, YZ = 4.5 cm, ZX = 4.6 cm and XT = 5 cm.

Sol. Steps of Construction:


(i) Draw a line segment XZ = 5.7 cm.

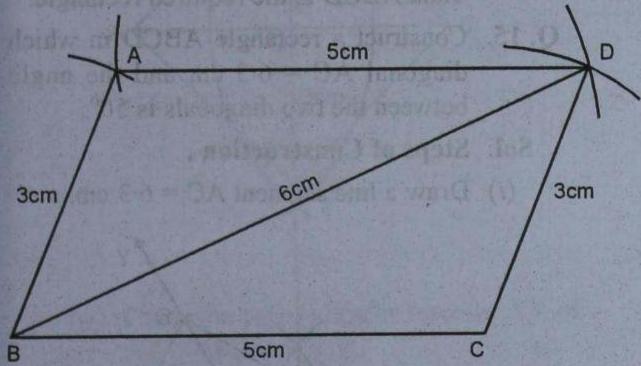
- (ii) With centre X and radius 5 cm and with centre Z and radius 4.6 cm, draw two arcs which intersect each other at T above the line segment XZ.
- (iii) Join TX and TZ.
- (iv) Again with centre X and radius 5.7 cm and with centre Z and radius 4.5 cm, draw two arcs intersecting each other at Y below the line segment XZ.
- (v) Join XY and ZY.Then XYZT is the required quadrilateral.
- Q. 8. Construct a parallelogram ABCD in which BC = 6 cm, CD = 4 cm and ∠C = 60°.

Sol. Steps of Construction:


(i) Draw a line segment BC = 6 cm.

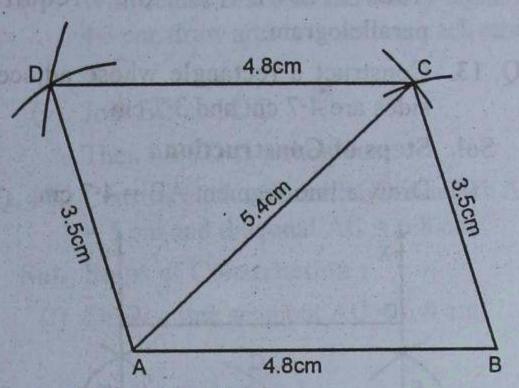
- (ii) At C, draw a ray CX making an angle of 60° and cut off CD = 4 cm.
- (iii) With centre B and radius 4 cm and with centre D and radius 5 cm, draw arc intersecting each other at A.
- (iv) Join AB and AD.Then ABCD is the required parallelogram.
- Q. 9. Construct a parallelogram PQRS in which QR = 4.7 cm, $\angle Q = 120^{\circ}$ and PQ = 2.8 cm.

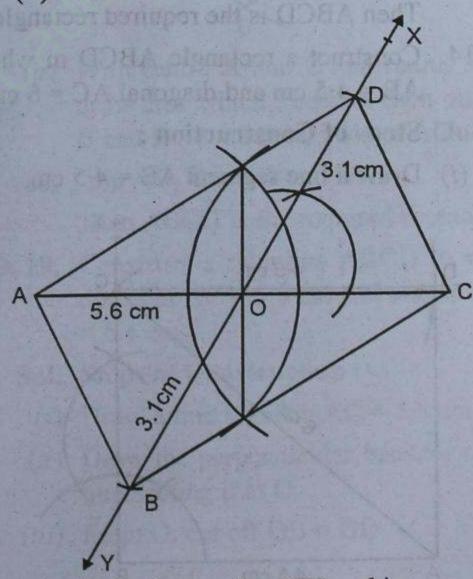
Sol. Steps of Construction:


(i) Draw a line segment PQ = 2.8 cm.

- (ii) At Q, draw a ray QX making an angle of 120° and cut off QR = 4.7 cm.
- (iii) With centre P and radius 4.7 cm and with centre R and radius 2.8 cm draw arcs intersecting each other at S.
- (iv) Join SP and SR.

Then PQRS is the required parallelogram.

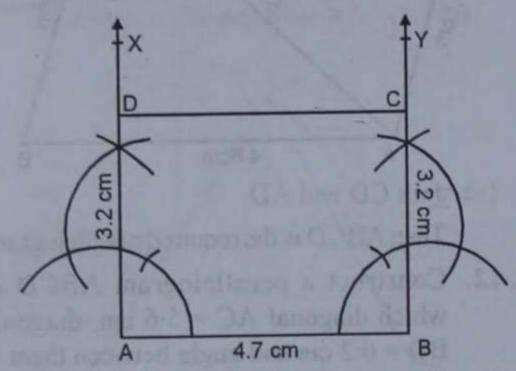

- Q. 10. Construct a parallelogram ABCD in which BC = 5 cm, CD = 3 cm and diagonal BD = 6 cm.
 - Sol. Steps of Construction:
 - (i) Draw a line segment BC = 5 cm.


- (ii) With B as centre and radius 6 cm, draw an arc.
- (iii) With C as centre and radius 3 cm, draw another arc intersecting the first arc at D.
- (iv) Join BD and CD.
- (v) Again with centre B and radius 3 cm draw an arc and with centre D and radius 5 cm draw another arc intersecting each other at A.
- (vi) Join AB and AD.

 Then ABCD is the required parallelogram.
- Q. 11. Construct a parallelogram ABCD in which AB = 4.8 cm, BC = 3.5 cm and diagonal AC = 5.4 cm.
 - Sol. Steps of Construction:
 - (i) Draw a line segment AB = 4.5 cm.
 - (ii) With centre A and radius 5.4 cm draw an arc and with centre B and radius 3.5 cm, draw another arc intersecting the first arc at C.
 - (iii) Join AC and BC.

(iv) Again with centre A and radius 3.5 cm and with centre C and radius 4.8 cm, draw two arcs intersecting each other at D.

- (v) Join CD and AD.Then ABCD is the required parallelogram.
- Q. 12. Construct a parallelogram ABCD in which diagonal AC = 5.6 cm, diagonal BD = 6.2 cm and angle between them is 60°.
 - Sol. Steps of Construction:
 - (i) Draw a line segment AC = 5.6 cm.
 - (ii) Bisect AC at O.



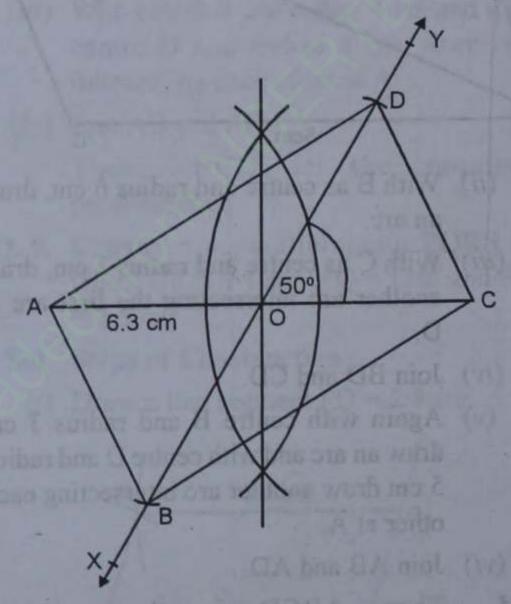
(iii) At O, draw a line XY making an angle of 60° and cut off OB = OD

$$=\frac{6\cdot 2}{2}=3\cdot 1\,\mathrm{cm}\,.$$


- (iv) Join AB, BC, CD and DA.

 Then ABCD is the required parallelogram.
- Q. 13. Construct a rectangle whose adjacent sides are 4.7 cm and 3.2 cm.
 - Sol. Steps of Construction:
 - (i) Draw a line segment AB = 4.7 cm.

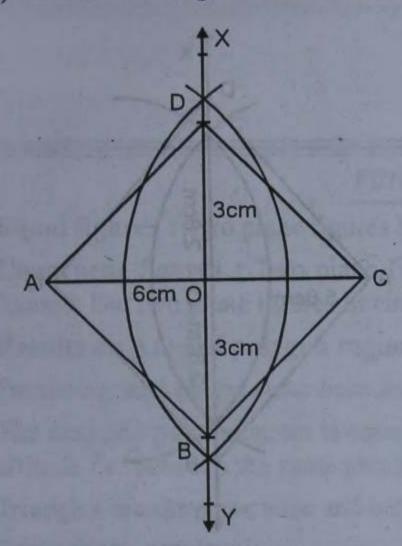
- (ii) At A and B, draw rays AX and BY making an angle of 90° each and cut off AD = BC = 3.2 cm.
- (iii) Join CD.


 Then ABCD is the required rectangle.
- Q. 14. Construct a rectangle ABCD in which AB = 4.5 cm and diagonal AC = 6 cm.
 - Sol. Steps of Construction:
 - (i) Draw a line segment AB = 4.5 cm.

(ii) At B, draw a ray BX making an angle of 90°.

- (iii) With centre A and radius 6 cm draw an arc which intersects the ray BX at C.
- (iv) Join AC.
- (v) With centre A and radius BC and with centre C and radius 4.5 cm, draw arcs intersecting each other at D.
- (vi) Join AD and CD.

 Then ABCD is the required rectangle.
- Q. 15. Construct a rectangle ABCD in which diagonal AC = 6.3 cm and the angle between the two diagonals is 50°.
 - Sol. Steps of Construction:
 - (i) Draw a line segment AC = 6.3 cm.

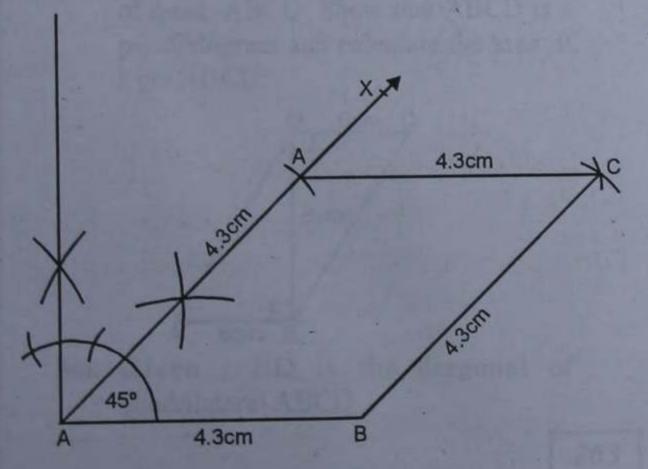


- (ii) Bisect AC at O.
- (iii) At O, draw a line XY making an angle of 50° and produce it both sides.
- (iv) Cut off OB = OD = $\frac{6.3}{2}$ cm = 3.15 cm

(: Diagonal of a rectangle are equal)

- (v) Join AB, BC, CD and DA.Then ABCD is the required rectangle.
- Q. 16. Construct a square one of whose diagonals measures 6 cm.
 - Sol. Steps of Construction:

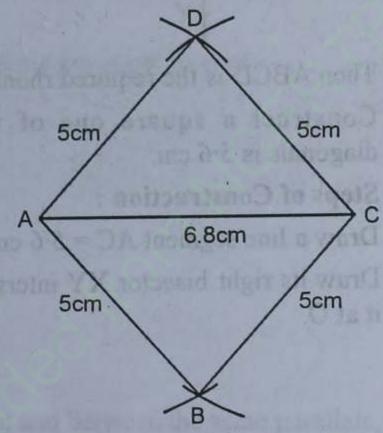
(i) Draw a line segment AC = 6 cm.



- (ii) Draw the perpendicular bisector XY of AC cutting AC at O.
- (iii) From O, cut off OB = OD = $\frac{6}{2}$ = 3 cm (: Diagonals of a square are equal and bisect each other at right angles)
- (iv) Join AB, BC, CD and DA.

 Then ABCD is the required square.
- Q. 17. Construct a rhombus ABCD in which AB = 4.3 cm and $\angle A = 45^{\circ}$.

Sol. Steps of Construction:

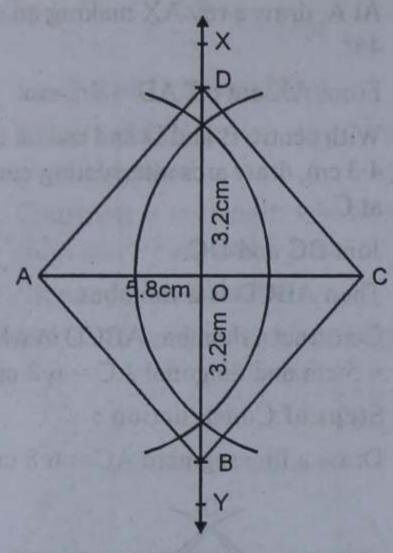

(i) Draw a line segment AB = 4.3 cm.

- (ii) At A, draw a ray AX making an angle of 45°.
- (iii) From AX cut off AD = 4.3 cm.
- (iv) With centre B and D and radius equal to 4.3 cm, draw arcs intersecting each other at C.
- (v) Join BC and DC.Then ABCD is a rhombus.
- Q. 18. Construct a rhombus ABCD in which AB = 5 cm and diagonal AC = 6.8 cm.

Sol. Steps of Construction:

(i) Draw a line segment AC = 6.8 cm.

- (ii) With centre A and C and radius 5 cm, draw arcs which intersect each other at B and D i.e. on both sides of AC.
- (iii) Join AB, BC, CD and DA.

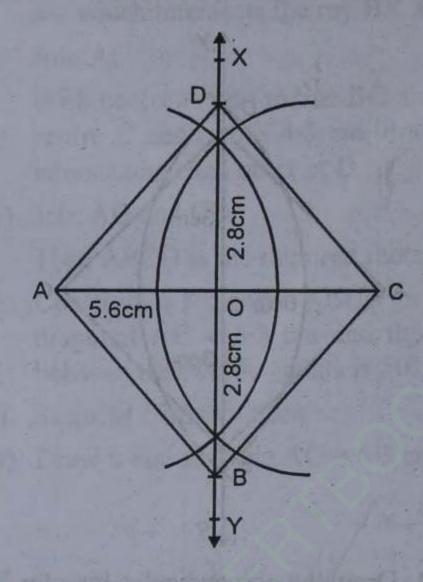

 Then ABCD is the required rhombus.
- Q. 19. Construct a rhombus ABCD in which diagonal AC = 5.8 cm and diagonal BD = 6.4 cm.

Sol. Steps of Construction:

- (i) Draw a line segment AC = 5.8 cm.
- (ii) Draw the perpendicular bisector of AC intersecting it at O.
- (iii) From O, cut off OB = OD

$$=\frac{6.4}{2}=3.2 \,\mathrm{cm}$$
.

(iv) Join AB, BC, CD and DA.



Then ABCD is the required rhombus.

- Q. 20. Construct a square one of whose diagonals is 5.6 cm.
 - Sol. Steps of Construction:
 - (i) Draw a line segment AC = 5.6 cm.
 - (ii) Draw its right bisector XY intersecting it at O.

Sor Steps of Constantion

Carried and applications of

(iii) From O, cut off OB = OD

$$=\frac{5\cdot 6}{2}=2\cdot 8\,\mathrm{cm}\,.$$

(iv) Join AB, BC, CD and DA.

Then ABCD is the required square.