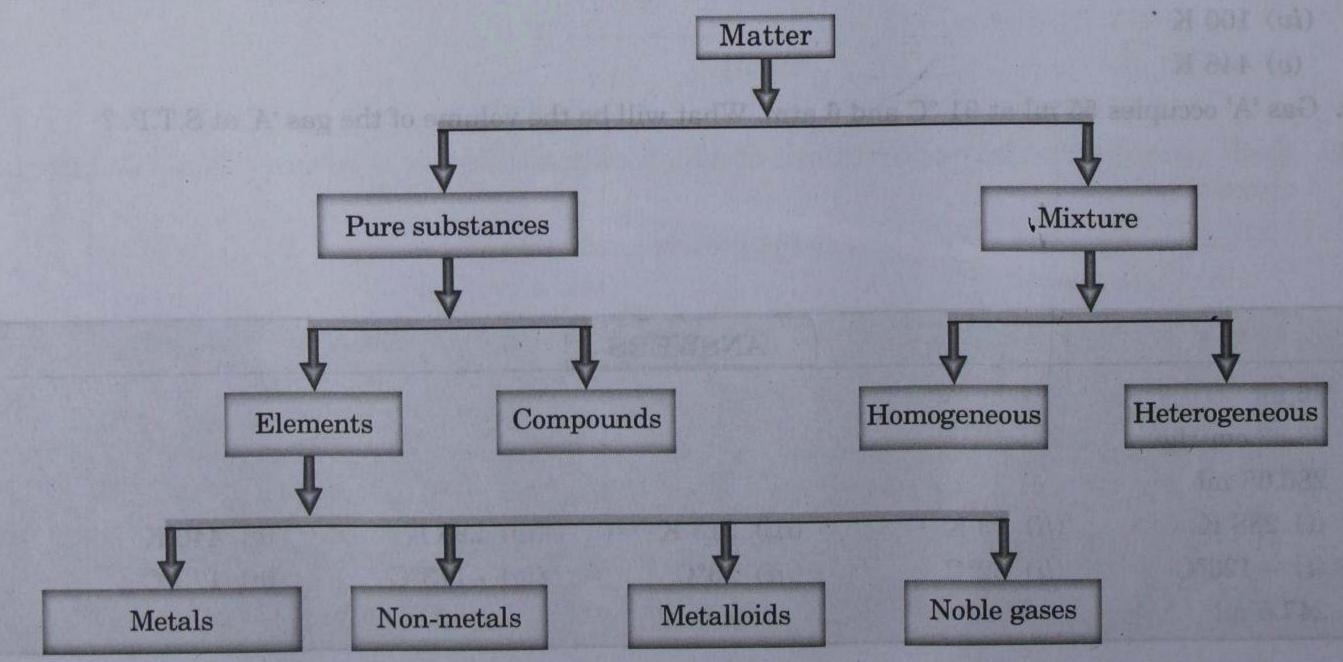


ELEMENTS, COMPOUNDS AND MIXTURES

SCOPE OF SYLLABUS

- (i) General characteristics and differences between elements, compounds and mixtures.

 Reasons for considering a substance as an element, compound or mixture may be given to make the concepts clear.
- (ii) Types of mixtures: of two solids, a solid and a liquid, two liquids, liquid and gas, two gases.


 Definition of mixture; each type of mixture should be shown to the students (including both homogeneous and heterogeneous types) true solution, suspension and colloidal solution to make the concepts clear.
- (iii) Separation of mixtures involving use of a solvent, filtration, evaporation and distillation, fractional distillation, simple paper chromatography, centrifugation, immiscible liquid.

The following examples should be used to illustrate the principles of separation of mixtures by using following methods.

- (a) Use of solvent and filtration (e.g., sodium chloride + sand (water as solvent), carbon and sulphur (carbon tetrachloride as solvent).
- (b) Evaporation e.g., sodium chloride from its aqueous solution.
- (c) Distillation e.g., purification of water containing dissolved solids.
- (d) Fractional distillation involves the difference in boiling points of liquids e.g., benzene + toluene.
- (e) Simple paper chromatography (limited to separation of colouring matter in ink).
- (f) Centrifugation (involving separation of cream from milk).
- (g) Immiscible liquids (separating funnel e.g., water + carbon tetrachloride).

IMPORTANT POINTS TO REMEMBER

1. Matter can be easily classified as

32 (Together with ® Chemistry (ICSE)-IX

2. Pure substances are one which contains particles of only one kind. Pure substances have a definite set of properties.

3. Pure substances which are made up of particles or atoms of only one kind are called elements. The elements cannot be made or broken down into simpler substances by any physical or chemical means.

4. These elements are placed in the increasing order of their atomic number in periodic table.

There are 116 elements discovered.

5. Elements are classified as

(i) Metals

(ii) Non-metals

(iii) Metalloids

(iv) Inert gases or Noble gases.

6. The differences between metals and non-metals are:

	Metals		Non-metals
(i)	Metals are solids except Mercury which exists in liquid state at room temperature. Gallium and Caesium exist in liquid state at 30° C.	(i)	Non-metals are usually gases sometimes solids like Carbon, Sulphur and Phosphorus. Bromine is a liquid non-metal.
(ii)	Metals are sonorous.	(ii)	Non-metals are non-sonorous.
(iii)	Metals are lustrous.	(iii)	Non-metals are non-lustrous. Except Carbon (Graphite) and Iodine.
(iv)	Metals are ductile. The property of metals by which they can be drawn into wires is called ductility.	(iv)	Non-metals are non-ductile.
(v)	Metals are malleable. The property of metals by which they can be beaten into sheets is called malleability.	(v)	Non-metals are non-malleable.
(vi)	Metals have high density.	(vi)	Non-metals have low density.
(vii)	Metals have high melting point and boiling point.	(vii)	Non-metals have low melting point and boiling point.
(viii)	Metals are monoatomic. The number of atoms present per molecule of an element is called as atomicity.	(viii)	Non-metals are diatomic (H_2, N_2, O_2) . They may be polyatomic like Ozone — O_3
100			Phosphorus — P ₄ Sulphur — S ₈
(ix)	Metals are good conductors of heat and electricity.	(ix)	Non-metals are poor conductors of heat and electricity except Carbon (Graphite) and Carbon (Gas carbon).
(x)	Metals form basic oxides and few amphoteric oxides.	(x)	Non-metals form acidic oxides and few neutral oxides.

7. The elements having certain properties of metals and non-metals are called metalloids. For example, Arsenic, Germanium, Antimony, Bismuth.

8. The elements having eight electrons in their outermost shell or valence shell are called inert gases or noble gases. Except helium, all the inert gases have eight electrons in their valence shell.

He — Helium

Helium complete duplet i.e., two electrons in valence shell.

Ne - Neon

Ar — Argon

Kr - Krypton

Xe — Xenon

Rn — Radon.

9. Compounds are the pure substances in which two or more elements combined chemically in fixed proportion by weight.

10. Characteristics of Compounds are:

- (i) Compounds are homogeneous.
- (ii) In compounds, two or more elements combined chemically in fixed proportion by weight.
- (iii) The different constituents of compounds cannot be separated by simple physical means. They can only be separated by chemical means, for example electrolysis of water.

$$2H_2O \xrightarrow{\text{electrolysis}} 2H_2 + O_2$$

Water breaks down to give hydrogen and oxygen on passing electric current whereas water cannot be separated into hydrogen and oxygen by simple physical means like filtration, distillation, etc.

- (iv) The constituents of compounds loose their identical properties. For example, water is a compound of hydrogen and oxygen. Hydrogen is a combustible gas whereas oxygen is a supporter of combustion whereas water is a colourless liquid which is neither combustible nor it is a supporter of combustion.
- (v) Formation of compounds involves energy changes, i.e., the energy is either released or absorbed, i.e., either the reaction is exothermic or endothermic in nature.
- 11. When two or more elements or compounds combine physically in any proportion by weight mixtures are formed.
- 12. Mixture may be homogeneous or heterogeneous in nature.
- 13. The mixture having the same composition and same property in its every part is called homogeneous mixture.
- 14. The mixture having different properties and different compositions in different parts is called heterogeneous mixture.
- 15. Characteristics of Mixtures are:
 - (i) In mixture the different constituents combine physically in any proportion by weight.
 - (ii) During the formation of mixture no energy changes take place.
 - (iii) The constituents of mixture do not loose their identical property. For example, in a mixture of iron and sulphur, iron gets attracted by the magnet and sulphur dissolves in carbon disulphide.
 - (iv) The different constituents of mixture can be easily separated by simple physical means like distillation, filtration, etc.
 - (v) Mixture may be homogeneous or heterogeneous in nature.
- 16. The comparative study of compounds and mixtures are as follows by taking the example of mixture of iron and sulphur and the compound of iron and sulphur, i.e., iron (II) sulphide.

Mixture of Iron and Sulphur	Iron (II) sulphide
 (i) The mixture is heterogeneous in nature and the two constituents are easily visible in the form of yellow and grey particles. (ii) When a magnet is rolled over the mixture the grey coloured iron particles cling to the magnet. This shows that the constituents of mixture can be easily separated by simple physical means and the constituents of mixture retain their identical properties. (iii) When carbon disulphide is added to mixture, yellow sulphur particles dissolve leaving behind grey coloured iron particles. 	to the magnet. This shows that the constituents of compounds cannot be separated by simple physical means and the constituents in compounds loose their identical properties.

(iv) On adding dilute hydrochloric acid to the mixture of iron and sulphur a colourless and odourless gas evolves which burns with popping sound as iron reacts with dilute hydrochloric acid to liberate hydrogen.
Fe + [S] + 2HCl → FeCl₂ + H₂↑ + [S] unreacted dil.

This shows that all the constituents of mixture do not take part in a single chemical reaction.

(iv) On adding dilute hydrochloric acid to the compound of iron and sulphur, i.e., iron (II) sulphide, a colourless gas having rotten egg smell evolves which turns lead acetate solution black.

 $FeS + 2HCl \longrightarrow FeCl_2 + H_2S \uparrow$ dil.

 $(CH_3COO)_2Pb + H_2S \xrightarrow{} PbS \downarrow + 2CH_3COOH$ black ppt.

This shows that all the constituents of compound undergo chemical reaction.

17. The differences between compound and mixture can be summarized as:

Compound	Mixture
(i) When two or more elements combine chemically in fixed proportion by weight, compound is formed.	(i) When two or more elements or compounds combine physically in any proportion by weight, mixture is formed.
(ii) Compounds are always homogeneous.	(ii) Mixture may be homogeneous or heterogeneous.
(iii) The constituents of compound loose their identical properties.	(iii) The constituents of mixture retain their identical properties.
(iv) The constituents of compounds cannot be separated by simple physical means.	(iv) The constituents of the mixtures can be easily separated by simple physical means.
(v) Energy changes take place during the formation of a compound.	(v) No energy changes take place during the formation of mixture.

- 18. The homogeneous mixture of solute and solvent is called as solution.
- 19. Solids, liquids and gases can be mixed together in different proportions to get the mixtures. The mixtures formed may be either homogeneous or heterogeneous. Depending upon the physical property of mixture, they can be classified as follows:

Constituents of mixture	Nature of mixture	Examples
(i) Solid-Solid	Homogeneous	Alloys
(ii) Solid-Solid	Heterogeneous	Iron and Sulphur Sand and Sugar.
(iii) Solid-Liquid	Homogeneous	Sugar in Water Salt in Water.
(iv) Solid-Liquid	Heterogeneous	Sand in Water Sulphur in Water.
(v) Liquid-Liquid	Homogeneous	Ethyl alcohol and Water Milk in Water.
(vi) Liquid-Liquid	Heterogeneous	Oil in Water Benzene in Water.
(vii) Liquid-Gas	Homogeneous	Hydrogen chloride gas in Water Ammonia in Water
viii) Gas-Gas	Homogeneous	Air
(ix) Gas-Solid	Heterogeneous	Smoke.

- 20. A system consisting of a substance distributed as very small particles of solid, droplets of liquid or tiny bubbles of gas in a suitable medium is called dispersion system.
- 21. The distributed substance is called dispersed phase.
- 22. The medium in which the dispersed phase is distributed is called dispersion medium.
- 23. On the basis of the size of particles, the dispersion system can be classified as
 - (i) True solution
 - (ii) Colloidal solution
 - (iii) Suspension.
- 24. True solution is homogeneous system and the particle size is less than 1 nm i.e., 10⁻⁹ m. These particles are invisible and cannot be seen even with the microscope. Due to their very small size of the dispersed phase, true solutions can pass through ordinary filter paper as well as through the animal membrane. The particles do not settle down under the influence of gravity.

For example: Common salt, sugar, urea form true solution in water.

- 25. Colloidal solution is heterogeneous system and the particle size is lying between 1 nm 100 nm (10⁻⁹ m 10⁻⁷ m). Although the particles of colloidal solution are larger than that of true solution, yet they are not large enough to be seen with the naked eye. However, they can be seen with the help of ultramicroscope. Colloidal solutions can easily pass through ordinary filter paper but not through the animal membrane. The particles do not settle but settle by centrifugation.
- 26. Suspension is also heterogeneous system and the particle size is more than 100 nm (>10⁻⁷ m). These particles are visible to the naked eyes. The particles of suspension neither pass through ordinary filter paper nor to animal membrane. The particles easily settle down.

Important Characteristics of True solutions, Colloidal solutions and Suspension

	Property	True solutions	Colloidal solutions	Suspension
(i)	Particle size	Less than 1nm (10 ⁻⁹ m)	Between 1 nm $- 100$ nm $(10^{-9} \text{ m} - 10^{-7} \text{ m})$	Greater than 100 nm (>10 ⁻⁷ m)
(ii)	Nature	Homogeneous.	Heterogeneous.	Heterogeneous.
(iii)	Visibility of particles	Invisible.	Visible under ultramicroscope.	Visible through naked eyes.
(iv)	Filtrability	Can easily pass through ordinary filter paper and animal membrane.	Can easily pass through ordinary filter paper but not through animal membrane.	Cannot pass through ordinary filter paper as well as animal membrane.
(v)	Settling of particles under the influence of gravity	Do not settle.	Do not settle but they can be made to settle under high speed by centrifugation.	Settle down.
(vi)	Scattering of light	Do not scatter.	Scatter light (shows Tyndall effect).	Do not scatter.

- 27. Separation of solid-solid mixtures by the following named techniques:
 - (i) Mechanical separation or handpicking. This method is used to separate those mixtures which have difference in (a) size of the particles (b) colour of the particles. So, they can be easily distinguished and picked by hand. For example, stones mixed with rice.
 - (ii) Magnetic separation. This method is employed for the separation of mixtures where one of the components is magnetic in nature, i.e., it gets attracted by the magnet like iron, cobalt, steel, etc. For example, mixture of iron and sulphur.
 - (iii) Using a suitable solvent. This method is used for those mixtures in which one of the components is soluble in a particular solvent.

For example,

(a) In a mixture of iron and sulphur, sulphur can be separated by dissolving it in carbon disulphide.

- (b) In a mixture of nitre and charcoal, nitre dissolves in water leaving behind charcoal.
- (c) The components of gun powder, *i.e.*, nitre, charcoal and sulphur can be easily separated by first adding carbon disulphide which dissolves sulphur and then adding water which dissolves nitre.
- (d) In a mixture of sodium chloride and sand, water is added. Sodium chloride dissolves in water leaving behind sand.
- (e) In a mixture of carbon and sulphur, carbon tetrachloride is added. Sulphur dissolves in carbon tetrachloride leaving behind carbon.

The different compounds are recorded, as the insoluble component is left as a residue on the filter paper and the soluble component passes through the funnel as the filtrate. The insoluble component is dried between the folds of filter paper. The filtrate is evaporated slowly by mild heating or when exposed to sunlight. The solvent evaporates leaving behind the soluble compound.

List of Substances and Important Solvents in which they dissolve

	Substance	Solvent
(i)	Sulphur	Carbon disulphide
(ii)	Phosphorus	Carbon disulphide
(iii)	Grease	Petrol
(iv)	Paint	Turpentine oil
(v)	Rust	Oxalic acid
(vi)	Nail polish	Acetone
(vii)	Chlorophyll	Methylated spirit
(viii)	Nitre	Water
(ix)	Oil	Petrol
(x)	Iodine	Ethyl alcohol.

- (iv) Fractional crystallization. If both the solids of a mixture are soluble in a common solvent but have different solubilities at a given temperature. This process of separation of two different soluble salts in their solution forms by crystallization is called as fractional crystallization.

 For example, mixture of nitre and sodium chloride.
- (v) Sublimation. This method is used for the separation of mixtures, where one component of the mixture sublimes, i.e., it directly gets converted into vapour state without passing through the liquid state. The substances that sublime are ammonium chloride, iodine, dry ice, naphthalene, camphor, benzoic acid, etc.

For example,

- (a) Mixture of sand and iodine. Iodine sublimes leaving behind sand.
- (b) Mixture of ammonium chloride and sodium sulphate. Ammonium chloride sublimes leaving behind sodium sulphate.
- (c) Mixture of benzoic acid and iron filings. Benzoic acid sublimes leaving behind iron filings.

28. Separation of solid-liquid mixtures (Heterogeneous mixtures).

The following techniques are employed for separating solid-liquid heterogeneous mixtures.

(i) Sedimentation and Decantation. The solid is heavier than liquid and is insoluble in liquid. The settling down of the heavier insoluble particles under the influence of gravity is called as sedimentation. The insoluble solid which settles down under the influence of gravity is called sediment. The clear liquid above the sediment is called the supernatant liquid.

The process of pouring off the clear liquid above the sediment is called decantation.

For example,

- (a) Mixture of sand and water
- (b) Mixture of mud and water.
- (ii) Filtration. The solid is lighter and insoluble in liquid. The process of separation of insoluble, lighter solid component of a mixture from its liquid by passing it through the filter paper is called the process of filtration. The insoluble solid component left on the filter paper after the process of filtration is called residue. The clear liquid obtained after the process of filtration is called filtrate. For example,

Mixture	Residue	Filtrate
(i) Sawdust and water	Sawdust	Water
(ii) Lead sulphate and water	Lead sulphate	Water
(iii) Barium sulphate and hydrochloric acid	Barium sulphate	Hydrochloric acid

29. Separation of solid-liquid mixtures (Homogeneous mixtures).

The following techniques are employed for separating solid-liquid homogeneous mixtures.

(i) Evaporation. Evaporation is the process of conversion of liquid into its vapour state at any temperature (below its boiling point) by supplying heat.

By evaporation those mixtures are separated where solid is soluble in liquid and is non-volatile in nature. During evaporation only solute particles are recovered whereas the liquid portion gets escaped. In salt solution, water gets evaporated leaving behind salt.

For example,

Mixture	Solute	Liquid (solvent)
(i) Salt and water	Salt	Water
(ii) Sugar and water	Sugar	Water

- (ii) Distillation. The process of simultaneous evaporation and condensation is called distillation. In this process both the solid (solute) as well as the liquid (solvent) components are recovered.
 For example,
 - (a) Mixture of salt and water
 - (b) Mixture of sugar and water
 - (c) Distilled water from water.

30. Separation of liquid-liquid mixtures:

The liquid-liquid mixtures are of two types:

(i) Miscible liquids : Homogeneous

(ii) Immiscible liquids: Heterogeneous.

Miscible liquids are separated by the process of fractional distillation on the basis of difference in their boiling points. The liquid having lower boiling point will distil first while with higher boiling point will distil out at last.

For example,

- (i) Petroleum is a mixture of several hydrocarbons separated by fractional distillation.
- (ii) Mixture of ethyl alcohol and water.
- (iii) Mixture of benzene and toluene.

Organic compound	Boiling Point	Fraction to be distiled	
Benzene	80.1°C	first distil	
Toluene	110.6°C	left behind	

Immiscible liquids are separated by using separating funnel on the basis of the difference in their densities. The heavier liquid settles down whereas the lighter liquid floats.

For example,

- (i) Mixture of carbon tetrachloride and water.
- (ii) Mixture of carbon disulphide and water.

Immiscible liquids	Heavier	Lighter
Carbon tetrachloride + Water	Carbon tetrachloride	Water
Carbon disulphide + Water	Carbon disulphide	Water

31. Separation of liquid-gas mixtures.

The principle behind the separation of liquid-gas mixture is that the solubility of a gas in a liquid decreases with the rise in temperature.

For example,

- (i) Mixture of carbon dioxide in water.
- (ii) Mixture of sulphur dioxide in water.
- (iii) Mixture of dissolved gases in water.

32. Separation of gas-gas mixtures.

The gas-gas mixtures are easily separated by the following methods:

(i) Diffusion. The rate of diffusion of the gases is inversely proportional to the square roots of their densities according to the Graham's law of diffusion. The lighter gases undergo fast diffusion as compared to heavier gases. The care should be taken that during diffusion, the gases should not undergo chemical reaction.

For example,

- (a) Mixture of nitrogen and carbon dioxide.
- (b) Mixture of hydrogen and carbon dioxide.
- (ii) Dissolution in a suitable solvent. The gas-gas mixtures can be separated by passing it through suitable solvent in which one of the components dissolves.

For example,

- (a) Mixture of carbon dioxide and nitrogen. If the mixture is passed through caustic potash solution, carbon dioxide gets absorbed leaving behind nitrogen.
- (b) Mixture of hydrogen chloride gas and nitrogen. If this mixture is passed through water, hydrogen chloride gas gets dissolved in water leaving behind nitrogen.
- (iii) By preferential liquefaction. It is the process in which the homogeneous mixture of gases is suddenly allowed to expand, then one of the components gets liquified under high pressure.

For example,

Mixture of ammonia and carbon monoxide. Ammonia liquifies leaving behind carbon monoxide.

33. Chromatography. The process of separation of the different dissolved components of a mixture present in a small quantity by absorbing them on the surface of suitable adsorbent is called chromatography.

Paper chromatography can be used for the separation of various pigments (colouring matter) of the ink on the basis of process of adsorption.

For example,

(i) Separation of colouring matter in ink.

(ii) Pigments of flower.

34. Centrifugation. The process of separation of solid from a solid-liquid mixture, where the mixture is homogeneous is called centrifugation.

For example, milk, blood (colloidal solutions), precipitates of salts.

To separate cream from milk:

The liquid is taken in a centrifuge tube, balance this tube by placing the tube of equal weight in a centrifuge machine on its opposite side and the tubes are rotated at a very high speed. As a result, the solid cream settles down leaving behind the milk.

Elements, Compounds and Mixtures

IMPORTANT QUESTIONS

- Q1. How will you separate following mixtures? (Name technique only).
 - (i) Iron and sulphur
 - (ii) Salt and water
 - (iii) Nitre, charcoal and sulphur
 - (iv) Methyl alcohol and ethyl alcohol
 - (v) Benzene and water
 - (vi) Carbon dioxide and hydrogen
 - (vii) Ammonium chloride and sand
 - (viii) Benzoic acid and iron filings
 - (ix) Kerosene oil and water
 - (x) Ammonia and nitrogen
 - (xi) Pigments of leaf
 - (xii) Iodine and common salt
 - (xiii) Iodine and chloroform
 - (xiv) Nitrogen from liquid air
 - (xv) Nitrogen and hydrogen chloride gas.
- Ans. (i) By using magnet.
 - (ii) By evaporation or distillation.
 - (iii) First dissolving the mixture in water, nitre will dissolve and insoluble charcoal and sulphur are separated by filtration. Nitre can be obtained by the process of crystallization. Charcoal and sulphur are treated with carbon disulphide. Sulphur dissolves and charcoal is separated by filtration. Sulphur is obtained by the evaporation of carbon disulphide.
 - (iv) By fractional distillation.
 - (v) By separating funnel.
 - (vi) By dissolving in suitable solvent.
 - (vii) By sublimation.
 - (viii) By sublimation/magnetic separation.
 - (ix) By separating funnel.
 - (x) By using suitable solvent.
 - (xi) By chromatography.
 - (xii) By sublimation.
 - (xiii) By distillation.
 - (xiv) By fractional distillation.
 - (xv) By dissolving in water.
 - Q2. Name the following:
 - (i) Metal which exists in liquid state at room temperature.
 - (ii) A non-metal having metallic lustre.

- (iii) A liquid non-metal.
- (iv) A non-metal which is good conductor of electricity.
- (v) The property of metals by which they can be drawn into wires.
- (vi) The property of metals by which they can be beaten into sheets.
- (vii) The number of atoms present per molecule of an element.
- (viii) A diatomic element.
 - (ix) A triatomic element.
 - (x) A tetraatomic element.
- Ans. (i) Mercury
 - (ii) Carbon (Graphite)
 - (iii) Bromine
 - (iv) Carbon (Graphite, Gas carbon)
 - (v) Ductility
 - (vi) Malleability
 - (vii) Atomicity
 - (viii) Chlorine, hydrogen, oxygen, nitrogen
 - (ix) Ozone
 - (x) Phosphorus.
 - Q3. Define the following:
 - (i) Element

Sublimation

- (ii) Pure substance
- (iii) Compound
- (iv) Residue
- (v) Filtrate
- (vi) Distillate
- (ix) Adsorption
- (viii) Distillation(x) Sedimentation.
- Ans. (i) Element. It is the pure substance which is made up of atoms of only one kind.
 - (ii) Pure substance. A homogeneous material which is made up of particles of only one kind is called pure substance.
 - (iii) Compound. Compounds are the pure substances in which two or more elements combine chemically in fixed proportion by weight.
 - (iv) Residue. An insoluble component left behind after the process of filtration is called residue.
 - (v) Filtrate. The clear liquid obtained after the process of filtration is called filtrate.
 - (vi) **Distillate.** The liquid component recovered after the process of distillation is called distillate.

- (vii) Sublimation. The process in which solids on heating or without heating directly get converted into their vapour state without passing through the liquid state is called sublimation.
- (viii) Distillation. The process of simultaneous evaporation and condensation is called distillation.
- (ix) Adsorption. It is a surface phenomenon in which the absorption takes place only on the surface.
- (x) Sedimentation. The process of settling down of heavy insoluble particles under the influence of gravity is called sedimentation.

Q4. What do you observe when

- (i) Iodine crystals are heated?
- (ii) Ammonium chloride is heated?
- (iii) Zinc and sulphur are heated and the product thus formed is heated with dilute hydrochloric acid?
- (iv) A magnet is brought over the mixture of iron filings and sulphur?
- (i) Grey coloured crystals on heating get converted into violet coloured vapours which condense on Ans. the cooler portions of test-tube to give shining grey crystals back.
 - (ii) White powder on heating directly gets converted into their vapour state which condense on the cooler portions of the test-tube in the form of white solid back.
 - (iii) A greyish black powder is formed which on heating with dilute hydrochloric acid gives a colourless gas having rotten egg smell which turns lead acetate solution black.
 - (iv) Iron filings cling to the magnet.

Q5. Differentiate between

- (a) Metals and non-metals
- (b) Compound and mixture.

Ans. Differences:

(a)	Metals	Non-metals	
	(i) Metals are solids except mercury which exists in liquid state at room temperature. Gallium and Caesium exist in liquid state at 30° C.	(i) Non-metals are usually gases, some are solids like carbon, sulphur and phosphorus. Bromine is a liquid non-metal.	
	(ii) Metals are lustrous (shining surface).	(ii) Non-metals are non-lustrous.	
	(iii) Metals are sonorous.	(iii) Non-metals are non-sonorous.	
100	(iv) Metals are ductile.	(iv) Non-metals are non-ductile.	
	(v) Metals are malleable.	(v) Non-metals are non-malleable.	
	(vi) Metals are good conductors of heat and electricity.	(vi) Non-metals are poor conductors of heat and electricity.	
	(vii) Metals have high density.	(vii) Non-metals have low density.	
100	viii) Metals have high melting point and boiling point.	(viii) Non-metals have low melting point and boiling point.	

(b)	Compound	Mixture
(iii (iv	In compound, two or more elements combine chemically in fixed proportion by weight. Formation of compound involves energy change. The constituents of compounds loose their identical properties during its formation. The constituents of compounds cannot be separated by simple physical means. Compounds are homogeneous in nature.	 (i) In mixture, two or more elements or compounds combine physically in any proportion by weight. (ii) Formation of mixture does not involve any energy change. (iii) The constituents of mixture do not loose their identical properties during its formation. (iv) The constituents of mixtures can be separated by simple physical means. (v) Mixtures may be homogeneous or heterogeneous in nature.

	Sugar solution		Jellies, Soap lather		THE REAL PROPERTY.					
	Tincture of Iodine		Milk	C	halk water					
Ans.		True solution	Colloidal s	olution	uspension					
	Tin	cture of iodine, Milk,	Jellies, Chall	k water, Soap lather,	Sugar solution.					
Q9.	Cla	classify the following as true solution, suspension and colloidal solution.								
	(iii)	Colloidal solution								
	(ii)	True solution								
Ans.										
	(iii)	(iii) Which can pass through the filter paper but not through the animal membrane.								
		(ii) Which can pass through both, the ordinary filter paper and animal membrane.								
		(i) Which cannot pass through both, the ordinary filter paper and animal membrane.								
Q8.	Name the type of solution									
21101	1-1	False	(v)	True.	There are marked with the					
Ans.	(i)	True	(ii)	False	(iii) True					
		b) Kerosene on and water form a clear solution. b) Hydrogen chloride gas is highly soluble in water.								
		(iv) Kerosene oil and water form a clear solution.								
		(ii) The solubility of a gas in a liquid increases with decrease in pressure.								
		(i) The solubility of a gas in a liquid decreases with the rise in temperature.								
Q7.	State whether the following statements are True or False.									
-	ALC: N	Dilute acid		Alkali or dilute acid.						
Ans.		Ammonium hydroxide	111111111111111111111111111111111111111	Ammonium acetate	(iii) Soluble in hot					
		Copper hydroxide		Zinc hydroxide	Ann Callin Land					
	(1)	Silver chloride	(ii)	Lead sulphate	(iii) Lead chloride					

- (i) Fractional distillation Ans.
 - (ii) Separating funnel
 - (iii) The difference in the densities of the liquids.

LET'S RECALL

Fill Your Answer in the Space Given for Each Question. Q1. Match the following: Column II Column I (a) Tetraatomic (i) Ozone (b) Octaatomic (ii) Phosphorus (c) Triatomic (iii) Sulphur (d) Monoatomic (iv) Oxygen (e) Diatomic (v) Helium (iv)(iii) (ii)Ans. Column II Column I В. (Separation technique) (Mixture) (a) Evaporation/Distillation (i) Sand and iodine (b) By using magnet (ii) Salt and water (c) Filteration (iii) Nitrogen and ammonia (d) Sublimation (iv) Iron and sulphur (e) By using suitable solvent (v) Sand and sawdust (iii) (iv) (ii) Ans. Q2. Fill in the blanks. oxides (i) Metals usually form _____ oxides but sometimes __ (ii) Solvent for sulphur is _____. (iii) _____ changes take place during the formation of compound. (iv) Immiscible liquids are separated by using ______. (v) Benzoic acid _____ on heating. (vi) Constituents of the mixture _____ their identical properties. (vii) Water is a ______ . Its constituents cannot be separated by _____ means. (viii) Gun powder is a mixture of ______, ____ and _____ (ix) Mixture of ethanol and water is separated by ______ as it is a mixture of ____liquids. (x) Distillation is a process of simultaneous _____ and _____. Q3. State whether the following statements are True or False. (i) Solvent for paint is turpentine oil. (ii) Iodine sublimes on heating. (iii) If dilute hydrochloric acid is added to the mixture of iron and sulphur, hydrogen sulphide is obtained.

	(iv) Diamond is a non-m	etal having metallic lu	stre.		
	(v) Pigments of leaf are	separated by chromato	ography.		
Q4.	Each question has four	options, out of which	h only one optic	on is correct. I	Oark the bubble fo
	correct answer.				
	(i) Metal which exists i			(d) 1	Mercury
	(a) Sodium	(b) Potassium	(c) Calcium	(d) I	dercury
Ans.	(a)	(b)	(c)	(d)	
	(ii) The atomicity of me	tals is			
	(a) two	(b) one	(c) three	(d) f	our
Ans.	(a)	(b)	0	d	
	(iii) Sedimentation and	decantation are the tec	chniques used for	separating sol	id-liquid mixtures i
	which solid is				
	(a) soluble in liquid		(b) insoluble		
	(c) Both of these		(d) None of t	these	
Ans.	a	b	0	d	
	(iv) The solvent for nail	polish is			
	(a) water	(b) hot water	(c) detergen	t (d) a	cetone
Ans.	(a)	b	0	d	
	(v) Which of the followi	ng solutions shows Tyn	dall effect ?		
	(a) Suspension	(b) True solution		solution (d) A	All of the above
Ans.	(a)	b	0	d	
	(vi) Which is not the pro	operty of colloidal soluti	ion?		
	(a) Visible under m			catter light	widehit (0)
	(c) Heterogeneous		(d) None of t	these	
Ans	. a	b	0	d	
14	enswers 5	nue la since de la constitución de	Market La Print		West Control (Mary 1997)
1	***************************************				
1.	A. (i) c	(ii) a	(iii) b	(iv) e	(v) d
0	B. (i) d	(ii) a (ii) carbon disulphide	(iii) e	(iv) b (iv) separating	c funnel
2.	(i) basic, amphoteric(v) sublimes	(vi) retain	(vii) compound,		s rainer
	(viii) nitre, charcoal, sulphu			A DESCRIPTION OF	
	(x) evaporation, condensat	tion			
1000	(i) True	(ii) True	(iii) False	(iv) False	(v) True
4.	(i) d	(ii) b	(iii) b	(iv) d	(v) c (vi) b

SELF EVALUATION TEST

Time	e: 30 minutes	Marks: 30			
Q1.	. Name the following. (i) A non-metal having metallic lustre. (ii) A non-metal which is good conductor of electricity.	2			
Q2.	 How is the solubility of a gas in a liquid is affected by (a) increase in temperature? (b) decrease in temperature? (c) increase in pressure? (d) decrease in pressure? 	4			
Q3.	 (i) adding dilute hydrochloric acid to the mixture of iron and sulphur and the compound of iron an sulphur. (ii) bringing strong bar magnet near the mixture of iron and sulphur and the compound of iron an sulphur. 				
Q4.	 In which of the following would you expect change in energy? (i) Iron rod dipping in copper sulphate solution. (ii) Dissolution of glucose in water. (iii) Mixing of sugar in water. (iv) Mixing of nitrogen in methane. 	4			
Q5.	 5. State which of the following mixtures is homogeneous or heterogeneous (a) Oil and water (b) Salt and water (c) Brass (d) Alloy of metal with mercury (e) Iron and sulphur 	geneous. 5			
Q6.	6. Air is a mixture. Give five points to support your answer.	5			
Q7.	7. How are the following mixtures separated? Name the technique	e only.			
0.	 (a) Copper hydroxide and zinc hydroxide (b) Carbon tetrachloride and water 				
	(c) Oxygen and hydrogen (d) Mud and water (e) Lead sulphate and water				
	(f) Pigments of ink				