PRACTICAL WORK

SYLLABUS

Candidates will be asked to observe the effect of reagents and/or of heat on substances supplied to them. The exercises will be simple and may include the recognition and identification of certain gases listed below.

Gases: Hydrogen, Oxygen, Carbon dioxide, Chlorine, Hydrogen chloride, Sulphur dioxide, Hydrogen sulphide, Ammonia, Water vapour, Nitrogen dioxide.

Candidates are expected to have completed the following minimum practical work.

Simple experiments on:

- (i) Action of heat on the following compounds:
 - (a) copper carbonate, zinc carbonate
- (b) washing soda, copper sulphate crystals
- (c) zinc nitrate, copper nitrate, lead nitrate (d) ammonium chloride, iodine, ammonium dichromate Make observations, identify the products and make deductions where possible.
- (i) Action of dilute sulphuric acid on the following substances. (warm if necessary)
 - (a) a metal
- (b) a carbonate
- (c) a sulphide
- (d) a sulphite
- Make observations, identify the gas evolved and make deductions.

 (iii) Apply the flame test to identify the metal in the unknown substance.
 - (a) a sodium salt
- (b) a potassium salt
- (c) a calcium compound
- (iv) Simple experiments based on hard water and soft water identification of hardness simple softening by heating the temporary hard water, using washing soda and advantage of using detergents over soap in hard water.
- (v) Find out the sources of pollution of water bodies in the locality. Suggest preventive steps to control it.

I. RECOGNITION AND IDENTIFICATION OF GASES

1. Hydrogen

Preparation: Add dilute HCl or dilute H_2SO_4 to reactive metals (metals above hydrogen in the activity series) like magnesium, zinc, iron, etc.

Active metal+ dil Acid → Salt + Hydrogen

$$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2 \uparrow$$

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2 \uparrow$$

Recognition and Identification of Gas

- (a) The evolved gas is colourless, odourless
- (b) Neutral to litmus.
- (c) Pure hydrogen burns with a pale blue flame when a burning splint is brought near it.

$$2H_2 + O_2 \rightarrow 2H_2O$$

(d) Hydrogen mixed with air burns with a pop sound when a burning taper is brought near it.

2. Oxygen

Preparation: Heat heavy metallic oxides

Heavy metal oxide _____ Metal oxide/Metal + Oxygen

$$2Pb_3O_4$$
 $\xrightarrow{\Delta}$ $6PbO$ + $O_2 \uparrow$

$$2PbO_2$$
 $\xrightarrow{\Delta}$ $2PbO$ + $O_2 \uparrow$

2HgO
$$\xrightarrow{\Delta}$$
 2Hg + O₂ \uparrow

(a) The gas is colourless, odourless and neutral to litmus.
(b) It rekindles a glowing wooden splinter.
(c) The gas is absorbed in colourless alkaline solution of pyrogallol and turns it dark brown.

3. Carbon dioxide

Preparation: Heat metallic carbonate (except sodium carbonate and potassium carbonate) or add dilute acid to any carbonate or hydrogen carbonate.

Metallic carbonate ______ carbon dioxide Metal oxide CO₂↑ ZnCO₃ ZnO CO₂↑ CuCO₃ CuO Δ Metal carbonate/+ Acid Water + Carbon Salt hydrogen carbonate (dil) dioxide CaCl₂ + CO₂↑ CaCO₃ + 2HC1 H_2O NaC1 $H_2O + CO_2 \uparrow$ NaHCO₃ **HCl** + +

Recognition and Identification of Gas

- (a) The gas is colourless and odourless.
- (b) It turns moist blue litmus faint red.
- (c) When the gas is passed through lime water, it turns milky due to the formation of white precipitate of calcium carbonate.

(d) The gas has no effect on filter paper dipped in acidified K2Cr2O7 or KMnO4.

4. Chlorine

Preparation: Add conc. HCl to oxidizing agents like Pb3O4, PbO2, MnO2, etc.

Oxidizing agent + Conc. HCl \rightarrow Metal chloride + Water + Chlorine Pb₃O₄ + 8HCl \rightarrow 3PbCl₂ + 4H₂O + Cl₂ \(\gamma\) MnO₂ + 4HCl \rightarrow MnCl₂ + 2H₂O + Cl₂ \(\gamma\)

Recognition and Identification of Gas

- (a) The gas is greenish yellow with a sharp pungent choking odour.
- (b) It turns moist blue litmus paper red and finally bleaches, i.e. decolourizes it.

Colouring matter + [O] → Colourless or bleached product

(c) It turns moist starch iodide paper (Kl + starch solution) blue black.

 Cl_2 + 2K1 \rightarrow 2KC1 + Starch + l_2 \rightarrow Blue black colour

(d) Pass the gas through silver nitrate solution, a white precipitate (of silver chloride) is formed.

5. Hydrogen chloride

Preparation: Add conc. H₂SO₄ to metal chlorides like NaCl, KCl, etc.

Metal chloride + Conc. sulphuric acid → Metal sulphate + Hydrogen chloride

NaCl + H_2SO_4 \rightarrow NaHSO₄ + HCl \uparrow KCl + H_2SO_4 \rightarrow KHSO₄ + HCl \uparrow

- (b) The gas turns moist blue litmus paper red. (c) If a rod dipped in ammonia solution is brought near the gas, dense white fumes of ammonium chloride are formed. → NH₄Cl $NH_3(aq) +$ HCI (d) When the gas is passed through silver nitrate solution, a white precipitate of silver chloride is formed. → AgCl↓ + AgNO₃(aq) + HCl HNO3 The precipitate dissolves in excess NH₄OH. Sulphur dioxide Preparation: Add dil. HCl or dil. H₂SO₄ to metallic sulphites. Sulphur dioxide Metal\Hydrogen sulphite + dil. Acid → Salt Water SO₂↑ → 2NaCl H_2O 2HCl Na₂SO₃ SO2 1 H₂O $H_2SO_4 \rightarrow Na_2SO_4$ Na₂SO₃ 2SO₂↑ + $H_2SO_4 \rightarrow Na_2SO_4$ $2H_2O$ 2NaHSO₃ Recognition and Identification of Gas (a) The gas is colourless with smell of burning sulphur, (a suffocating odour). (b) Burning wooden splinter is extinguished in sulphur dioxide. (c) It turns moist blue litmus red and finally bleaches it. This bleaching is temporary. (d) The gas turns lime water turbid (milky). (Similar to carbon dioxide). $Ca(OH)_2 + SO_2 \rightarrow CaSO_3 \downarrow + H_2O$ Milkiness disappears on passage of excess of sulphur dioxide. CaSO₃ $H_2O + SO_2$ \rightarrow Ca(HSO₃)₂ (soluble) (d) It decolourizes pink acidified potassium permanganate solution. $2KMnO_4 + 2H_2O + 5SO_2 \rightarrow K_2SO_4 + 2MnSO_4 +$ 2H2SO4
- (pink) (colourless)
- (e) It changes orange/yellow solution of acidified potassium dichromate green. H₂O K₂Cr₂O₇ H_2SO_4 + 3SO₂ \rightarrow Cr₂(SO₄)₃ + K₂SO₄ + (orange) (green)
- (f) It has no effect on lead acetate paper.

7. Hydrogen sulphide

6.

Preparation: Add dil. HCl or dil. H₂SO₄ to metallic sulphides like ZnS, FeS, etc.

Salt + Hydrogen sulphide Metal sulphide + dil. Acid \rightarrow H₂SO₄ H₂S ↑ FeS FeSO₄ H₂S↑ ZnS 2HCl ZnCl₂ + + \rightarrow

Recognition and Identification of Gas

- (a) The gas is colourless with a foul smell as of rotten eggs.
- (b) It turns moist blue litmus red.
- (c) It turns lead acetate paper black.

PbS↓ 2CH₃COOH $(CH_3COO)_2Pb + H_2S$ (colourless) (black)

(d) It also turns *lead nitrate solution black*.

PbS↓ 2HNO₃ Pb(NO₃)₂ H2S (black) (colourless)

Note: H2S also turns acidified potassium permanganate from pink to colourless and acidified potassium dichromate from orange to green but as yellow sulphur is also present the solution is not clear.

120

Preparation: Add alkali to ammonium salt like ammonium chloride or ammonium suiphale. Water Ammonia Alkali Salt Ammonium salt + 2NH₃↑ $2H_2O$ 2NH₄Cl Ca(OH)2 CaCl₂ NH₃ ↑ NaCl H₂O NaOH NH₄Cl +

Recognition and Identification of Gas

- (a) The gas is colourless with a characteristic sharp, pungent smell.
- (b) It turns moist red litmus blue.
- (c) If a rod dipped in conc. HCl is brought near the gas, dense white fumes of ammonium chloride are formed.
- (d) The gas turns colourless Nesslers reagent, i.e. (K2HgI4) potassium mercuric iodide, brown.
- (e) On passing the gas through a solution of copper sulphate, pale blue precipitate is formed, on passing excess ammonia this precipitate dissolves to form a dark blue solution.

9. Water vapour

Preparation: Heat a crystalline substance like hydrated sodium carbonate or hydrated copper sulphate.

Recognition and Identification of Gas

- (a) Colourless and odourless vapours condense to form a clear liquid on the cooler part of the test-tube.
- (b) The liquid is neutral to litmus.
- (c) This liquid turns anhydrous copper sulphate from white to blue.

$$\begin{array}{cccc} \text{CuSO}_4 & + & 5\text{H}_2\text{O} & \rightarrow & \text{CuSO}_4 \cdot 5\text{H}_2\text{O} \\ \text{(white)} & & \text{(blue)} \end{array}$$

(d) It turns blue cobalt chloride paper pink.

$$CoCl_2$$
 + $2H_2O$ \rightarrow $CoCl_2 \cdot 2H_2O$ (blue) (pink)

10. Nitrogen dioxide

Preparation: Heat a heavy metal nitrate like copper nitrate or lead nitrate.

Metal nitrate \longrightarrow Metal oxide + Oxygen + Nitrogen dioxide $2Cu(NO_3)_2$ \longrightarrow 2CuO + O_2 + $4NO_2 \uparrow$ $2Pb(NO_3)_2$ \longrightarrow 2PbO + O_2 + $4NO_2 \uparrow$

Note: Sodium nitrate and potassium nitrate do not produce nitrogen dioxide when they are heated.

Recognition and Identification of Gas

- (a) The gas is brown in colour, has an irritating (pungent) odour and is non-combustible.
- (b) It turns moist blue litmus paper red.
- (c) It liberates iodine (violet vapours) from potassium iodie (Kl) solution or turns potassium iodide paper brown.

 $2K1 + 2NO_2 \rightarrow 2KNO_2 + l_2 \uparrow$

(d) It turns green acidified ferrous sulphate solution brown.

S. NO.	GAS	COLOUR	ODOUR	NATURE
1.	Hydrogen (H ₂)	Colourless	Odourless	Neutral
2.	Oxygen (O ₂)	Colourless	Odourless	Neutral
3.	Carbon dioxide (CO ₂)	Colourless	Odourless	Acidic
4.	Chlorine (Cl ₂)	Greenish yellow	Pungent	Acidic
5.	Hydrogen chloride (HCl)	Colourless	Pungent	Acidic
6.	Sulphur dioxide (SO ₂)	Colourless	Burning sulphur	Acidic
7.	Hydrogen sulphide (H ₂ S)	Colourless	Rotten eggs	Acidic
8.	Ammonia (NH ₃)	Colourless	Sharp pungent	Basic
9.	Water vapour (H ₂ O)	Colourless	Odourless	Neutral
10.	Nitrogen dioxide (NO ₂)	Brown	Irritating	Acidic

EXCERCISE 9 (A)

- (a) Give a chemical test to identify the following gases.
 - (i) Ammonia
- (ii) Sulphur dioxide
- (iii) Hydrogen chloride (iv) Chlorine
- (v) Carbon dioxide
- (vi) Oxygen
- (vii) Hydrogen
- (b) Select a basic gas mentioned in Q.1 (a). How is the basic nature verified?
- (c) Select acidic gases from the gases mentioned in Q.1(a). How is the acidic nature verified?
- (d) State the gas responsible for the bleaching action.
- (e) Which gas turns blue cobalt chloride paper light pink?
- 2. What is observed on performing the following:

	Hydrogen	Oxygen	Carbon dioxide	Chlorine
Litmus test				
Apply burning splint to the gas				
Colour of gas	colourless	colourless	colourless	greenish yellow
Odour of gas				

- 3. Give a chemical test to distinguish between the following gases.
 - (a) H₂ and CO₂
- (b) H₂ and O₂
- (c) CO₂ and SO₂
- (d) HCl and H₂S

- (e) HCl and Cl₂
- (f) NH₃ and HCl
- (g) SO₂ and Cl₂
- (h) NH₃ and SO₂
- 4. Name the gas that
 - (a) turns moist starch iodide paper blue black.
 - (b) turns moist red litmus blue.
 - (c) does not affect acidified K₂Cr₂O₇ paper but turns lime water milky.
 - (d) affects acidified K₂Cr₂O₇ paper and also turns lime water dirty milky.
- 5. What do you observe when
 - (a) CO2 is passed through lime water first and then a little in excess.
 - (b) HCl is passed through silver nitrate solution.
 - (c) H₂S is passed through lead nitrate solution.
 - (d) Cl₂ is passed through potassium iodide (KI) solution.
 - (e) Cobalt chloride paper is introduced in water vapour.

Write balanced equations for each of the above.

- 6. Name :
 - (a) Two carbonates that do not produce carbon dioxide on heating.
 - (b) Two nitrates that do not produce nitrogen dioxide on heating.
 - (c) A brown gas.
 - (d) A greenish yellow gas.
 - (e) A gas with rotten egg smell.

II. ACTION OF HEAT ON A GIVEN (UNKNOWN) SUBSTANCE

On heating, salts undergo characteristic changes. Some give off water of crystallization, while some decompose to give off gas/vapour. Some salts change their colour on heating, while some others sublimate. Careful observation of changes and identification of gases evolved give information that helps to identify the salt.

	Observation	Identification of substance
ii) Gives burning iii) Turns l	reen amorphous powder turns to black, on strong heating. off a colourless, odourless gas that extinguishes a g wooden splinter. ime water milky. s has no effect on acidified K ₂ Cr ₂ O ₇ or acidified KMnO ₄ .	CuCO ₃ $\xrightarrow{\Delta}$ CuO + CO ₂ (Black) Residue is copper oxide . Gas evolved is carbon dioxide . Deduction : Light green powder is copper carbonate.
ii) Gives water n iii) The gas iv) The res	ong heating, the light amorphous white solid, changes to allow. off a colourless and odourless gas that turns lime milky. The milkiness disappears on passing excess of gas. It is has no effect on acidified K ₂ Cr ₂ O ₇ or acidified KMnO ₄ . Induction, on cooling, changes to a white colour. due is yellow when hot and white when cold.	ZnCO ₃ $\xrightarrow{\Delta}$ ZnO + CO ₂ Residue is zinc oxide. Gas evolved is carbon dioxide. Deduction : White powder is zinc carbonate.
giving sii) Steamy form tiii) Colour sulphatiiv) Colour pink.	rystalline solid, on strong heating, swells and then melts, steamy vapours. vapours condense on the cooler parts of the test tube to my droplets of a colourless liquid. less liquid, when added to white anhydrous copper te, turns it blue. less liquid turns blue coloured cobalt chloride paper	Na ₂ CO ₃ . 10H ₂ O → Na ₂ CO ₃ + 10H ₂ O (steam) Residue is sodium carbonate. Gas evolved is water vapour. Substance is washing soda crystals.
ii) Gives of parts of iii) The liq iv) On stro	rystalline solid, on heating, crumbles to form a white hous powder. off steamy vapours, which, on condensing on the cooler of the test tube, form a colourless liquid (water). uid turns blue-coloured cobalt chloride paper pink. In heating, a black solid is formed and a gas is evolved. olved gas turns moist blue litmus red and changes colour ified K ₂ Cr ₂ O ₇ solution from orange to green.	 CuSO₄. 5H₂O A CuSO₄ + 5H₂O Residue is copper sulphate. Gas evolved is water vapour. 2CuSO₄ A 2CuO + 2SO₂ + O₂ On strong heating residue is black copper oxide Gases evolved are sulphur dioxide and oxygen. Substance is blue vitriol.
ii) On hear steamy iii) On heat that turn iv) A glow bursts i v) The res	crystalline deliquescent solid. ting, it melts to form a white sticky mass and gives off vapours. ing strongly, the white residue gives off reddish brown fumes in moist blue litmus paper red. ing wooden splint held in the reddish brown gas (NO ₂) into flame. This reddish brown gas is mixed with oxygen. Sidue is pale yellow, when it is hot, but on cooling, it is to a white colour.	Zn(NO ₃) ₂ · 6H ₂ O → Zn(NO ₃) ₂ + 6H ₂ O 2Zn(NO ₃) ₂ → 2ZnO + 4NO ₂ ↑ + O ₂ ↑ The residue is zinc oxide. Gases evolved are water vapour, nitrogen dioxide and oxygen. Substance is zinc nitrate hexahydrate.

2. 1)	form a bluish green mass and gives off steamy vapours that condense on the cooler parts of the test tube to form droplets of liquid (water).	$Cu(NO_3)_2 \cdot 6H_2O \xrightarrow{\Delta} Cu(NO_3)_2 + 6H_2O$ $2Cu(NO_3)_2 \xrightarrow{\Delta} 2CuO + 4NO_2 \uparrow + O_2 \uparrow$
iii)	On further heating, the <i>bluish</i> green mass changes to a black residue, <i>i.e.</i> copper (II) oxide. It gives off a <i>reddish brown</i> gas. It also gives a gas that rekindles a glowing splinter, <i>i.e.</i> oxygen.	Residue is copper oxide. Gases evolved are water vapour, nitrogen dioxide and oxygen. Substance is copper (II) nitrate hexahydrate.
	Heavy white crystalline solid, on strong heating, crumbles with a crackling noise.	$2\text{Pb}(\text{NO}_3)_2 \xrightarrow{\Delta} 2\text{PbO} + 4\text{NO}_2 + \text{O}_2$ Residue is lead (II) oxide.
iii)	It gives off a reddish brown gas, which turns moist blue litmus paper red. When a glowing wooden splinter is held in the reddish brown gas, it relights showing the presence of oxygen. The residue is <i>reddish brown when hot</i> . On cooling, it changes to yellow, partly fuses in glass, and stains it yellow.	Gases evolved are nitrogen dioxide and oxygen. Substance is lead (II) nitrate.
ii)	White crystalline solid, on strong heating, sublimates to form a basic gas (NH ₃) and an acidic gas (HCl). The dense white fumes are noticed which form a white mass on the cooler parts of the test tube. No residue is left behind.	$NH_4Cl \stackrel{\text{heat}}{\rightleftharpoons} NH_3 \uparrow + HCl \uparrow$ Substance is ammonium chloride.
ii) iii)	Violet crystalline solid, on strong heating, sublimates to form violet vapours. These vapours settles down on cooler part of the test tube to form violet crystals. No residue is left at the bottom of the test tube. A filter paper dipped in starch solution turns blue when it is brought in contact with the vapour. These vapours (fumes) turn paper dipped in silver nitrate solution yellow.	$\begin{array}{c} I_2 & \xrightarrow{\Delta} & 2I \uparrow \\ \text{(violet) (vapour)} \end{array}$ Substance is iodine.
	Orange red crystalline solid, on strong heating, swells up and decomposes violently with flashes of light leaving greenish residue. It also gives off steamy fumes, which condense on the cooler parts of the test tube to form tiny droplets of water. The colourless liquid turns cobalt chloride paper pink	$(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} Cr_2O_3 + N_2\uparrow + 4H_2O\uparrow$ (orange red) (greenish- grey) Gases evolved are water vapour and

ii) The colourless liquid turns cobalt chloride paper pink.

iii) Greenish grey mass of chromium oxide is left behind.

iv) A colourless, odourless gas is given out, which is neither combustible nor supports combustion. It does not turn lime water milky. The gas is nitrogen.

Gases evolved are water vapour and nitrogen.

Substance is ammonium dichromate.

		Residue left	Colour of residue	Gas produced
1.	Copper carbonate (CuCO ₃) Green solid	Copper (II) oxide CuO	Black solid	Carbon dioxide (CO ₂)
2.	Zinc carbonate (ZnCO ₃) White solid	Zinc oxide ZnO	Yellow when hot, white when cold	Carbon dioxide (CO ₂)
3.	Washing soda (Na ₂ CO ₃ ·10H ₂ O) White crystals	Anhydrous Na ₂ CO ₃	White powder	Water vapour (H ₂ O)
4.	Copper sulphate (CuSO ₄ ·5H ₂ O) Blue crystals	Anhydrous CuSO ₄	Dirty white	Water vapour (H ₂ O)
5.	Zinc nitrate (Zn(NO ₃) ₂) White solid	Zinc oxide ZnO	Yellow when hot, white when cold	Nitrogen dioxide and Oxygen (NO ₂ + O ₂)
6.	Copper nitrate (Cu(NO ₃) ₂) Green solid	Copper (II) oxide CuO	Black solid	Nitrogen dioxide and Oxygen (NO ₂ + O ₂)
7.	Lead nitrate (Pb(NO ₃) ₂) White solid	Lead oxide PbO	Yellow solid	Nitrogen dioxide and Oxygen (NO ₂ + O ₂)
8.	Ammonium chloride (NH ₄ Cl) White solid	No residue	White sublimate	Hydrogen chloride and Ammonia (HCl + NH ₃)
9.	Iodine (I ₂) Violet solid	No Residue	Violet sublimate	Iodine vapours
10.	Ammonium dichromate ((NH ₄) ₂ Cr ₂ O ₇) Orange solid	Chromium (III) oxide Cr ₂ O ₃	Green solid	Water vapour and Nitrogen (H ₂ O + N ₂)

III. Action of dilute sulphuric acid on a given substance.

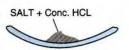
Observation	Inference
 a. Add dilute sulphuric acid to the given (unknown) substance and warm it. There is vigorous effervescence, and a colourless, odourless gas evolves. e.g. (i) Mg + H₂SO₄ → MgSO₄ + H₂ (ii) Zn + H₂SO₄ → ZnSO₄ + H₂ The gas burns with a pop sound when a burning splint is brought near it. 	Gas evolved is hydrogen. Given substance may be a reactive metal like zinc, iron, magnesium, etc.
 b. Add dilute sulphuric acid to the given (unknown) substance and warm it. A colourless gas is evolved with brisk effervescence, and the gas on passing through lime water turns lime water milky. e.g. (i) Na₂CO₃ + H₂SO₄ → Na₂SO₄ + H₂O + CO₂ (ii) 2NaHCO₃ + H₂SO₄ → Na₂SO₄ + 2H₂O + CO₂ The gas has no effect on acidified potassium dichromate paper. 	Gas evolved is carbon dioxide. Substance may be a carbonate or hydrogen carbonate.
 c. Add dilute sulphuric acid to the given (unknown) substance and warm it. A colourless gas with a foul smell, as of rotten eggs, is evolved. e.g. (i) FeS + H₂SO₄ → FeSO₄ + H₂S (ii) ZnS + H₂SO₄ → ZnSO₄ + H₂S 	Gas evolved is hydrogen sulphide. Substance may be a sulphide.
 d. Add dilute sulphuric acid to the given (unknown) substance and warm it. A colourless gas with suffocating smell of burning sulphur is evolved. Gas turns lime water milky and turns acidified potassium dichromate paper green. The gas turns lead acetate paper black. e.g. (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + CO₂ (ii) K₂SO₃ + H₂SO₄ → K₂SO₄ + 2H₂O + CO₂ 	Gas evolved is SO ₂ . Given substance is a sulphite.

- EACERCISE 7 (D)
- Distinguish by heating the following in dry test tube.
 - (a) zinc carbonate, copper carbonate and lead carbonate
 - (b) zinc nitrate and copper nitrate
 - (c) copper and copper carbonate
 - (d) ammonium chloride and iodine
- Match the following :

Column A	1	Column B
(a) Pb(NO ₃) ₂	(i)	rotten egg smell
(b) CO ₂		burns with pop sound
(c) $(NH_4)_2Cr$	₂ O ₇ (iii)	suffocating smell of sulphur
(d) HCl	775 (A)	lime water turns milky
(e) NO ₂	(v)	crackling sound
(f) O ₂	(vi)	residue swells up
(g) H ₂	(vii)	brown gas
(i) H ₂ S	(viii)	supports combustion
(j) SO ₂	(ix)	fumes in moisture

- 3. Distinguish by dilute sulphuric acid.
 - (a) Sodium sulphite and sodium carbonate?
 - (b) Copper and magnesium?
 - (c) Sodium sulphide and sodium sulphite?
- 4. Write your observation and a balanced equation in the case of the following substances being heated.
 - (a) Ammonium dichromate
 - (b) Copper nitrate
 - (c) Copper carbonate
 - (d) Zinc carbonate
 - (e) Ammonium chloride
- 5. State the original colour of the following substance and colour of residue obtained after heating.
 - (a) ammonium dichromate
- (b) copper carbonate

(c) lead nitrate


(d) zinc carbonate

IV. FLAME TEST

Compounds of certain metals impart a characteristic colour to a flame. The procedure to detect the colour imparted is as follows.

A thin platinum wire is first thoroughly cleaned by dipping it in concentrated hydrochloric acid. It is then heated in the nonluminous flame of the burner. The process is repeated. When the wire imparts no colour to the flame, it is ready for use.

Now, the wire is first dipped in concentrated hydrochloric acid and then into a small amount of the substance being investigated, so that a little of the substance may stick to it. It is then introduced into the non-luminous part of the flame, and the colour imparted to the flame is observed.

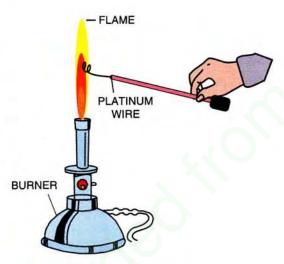


Fig. 9.1 Performing flame test

Table V — Colour imparted to a flame by salts of different metals

Colour imparted to the flame (Colour observed with naked eyes)		
a) Golden yellow (persistent)	Yellow colour vanishes	Sodium (Na ⁺)
b) Violet (Lilac)	Violet or Pink	Potassium (K+)
c) Brick red (fugitive, i.e. comes and goes).	Light green	Calcium (Ca ²⁺)
d) Peacock bluish green (Wire slowly gets corroded)	Bluish green	Copper (Cu ²⁺)

111

FLAME TESTS — COLOURS SODIUM SALT POTASSIUM SALT **CALCIUM SALT** COPPER SALT

Fig. 9.2 Colour imparted to the flame by salts

Brick Red Flame

Peackock Bluish. Green Flame

REGONITION OF SUBSTANCES BY COLOUR, ODOUR, PHYSICAL STATE AND ACTION OF HEAT

Lilac Flame

A.	Colour:	Suspected ion	1	B.	Odour :	
1.	Blue or bluish green colour.	Cu ²⁺	i		1. Smell of ammonia gas.	NH,+
2.	Light green colour.	Fe ²⁺	I		2. Smell of hydrogen sulphide gas.	S2-4
3.	Yellow or yellowish brown.	Fe ³⁺			3. Smell of sulphur dioxide gas.	SO, 2-
4.	White colour (or colourless).	Pb ²⁺ , Zn ²⁺ , Ca ²⁺ Na ⁺ , K ⁺ , or NH ₄ ⁺			,	3

C. State:

1. Amorphous salt. CO₃²-Cl or NO₃⁻

Golden Yellow Flame

2. Hygroscopic or deliquescent nature.

Action of Heat:

1. Ammonium salt when heated with alkali (except ammonium hydroxide) produces Ammonia gas Ammonium nitrate and Ammonium chloride (explosive) leaves no residue behind on heating Ammonium dichromate on heating leaves greenish grey mass

$$(NH_4)_2 Cr_2 O_7 \xrightarrow{\Delta} Cr_2 O_3 + N_2 + 4H_2 O_3$$

(orange) greenish grey

- 2. PbO₂, Pb₃O₄, HgO, KNO₃, NaNO₃ on heating produce oxygen gas
- 3. Carbonate and bicarbonate on heating evolve carbon dioxide (except K₂CO₃ and Na₂CO₃)
- 4. Hydrated salts on heating produce water vapour
- Sulphites and some sulphates when heated produce sulphur dioxide gas 5.
- Lead compounds decompose to give lead monoxide PbO (litharge) PbO is brown when hot, yellow when cold and sticks to the glass.
- 7. Zinc compounds decompose on heating to give zinc oxide. $ZnCO_3 \rightarrow ZnO + CO_2$ Zinc oxide is yellow when hot white when cold.

$$ZnO \xrightarrow{\Delta} ZnO$$
 white $Cool$ $Cool$ $Vert Sin O$ $Vert Si$

8. Copper compounds decompose to give black copper oxide CuO.

$$\begin{array}{ccc} \text{CuCO}_3 & \xrightarrow{\Delta} & \text{CuO} & + & \text{CO}_2 \\ \text{(green)} & & \text{(black)} \end{array}$$

Note: Dry test involves - colour, density, physical state, dry heating and flame test. Wet test involves adding reagents to identify the substance.

(Roman numerals indicate the valency of the radical or metal)

Cation→ Anion	K	Na	Ba	Ca	Mg	Al	Zn	Fe	Fe	Mn	Pb	Cu	Ag	Hg
1	(I)	(I)	(II)	(II)	(II)	(III)	(II)	(II)	(III)	(II)	(II)	(II)	(I)	(II)
NO ₃ (I)	S	S	S	S	S	S	S	S	S	S	S	S	S	S
CH ₃ COO(I)	S	S	S	S	S	Sp	S	S	S	S	S	S	S	S
Cl(I)	S	S	S	S	S	S	S	S	S	S	N	S	N	N
SO ₄ (II)	S	S	N	Sp	S	S	S	S	S	S	N	S	Sp	S
OH(I)	S	S	S	Sp	Sp	N	N	N	N	N	N	N	,=1	-6
S(II)	S	S	S	Sp	S	-	N	N	_	N	N	N	N	N
SO ₃ (II)	S	S	N	N	N		N		N	N	N	N	N	N
PO ₄ (III)	S	S	N	N	N	N	N	N	N	N	N	N	N	N
CO ₃ (II)	S	S	N	N	N		N	N	N	N	N	N	N	N

Note: S: Soluble N: Insoluble —: Does not exist Sp: Sparingly soluble

Identification of solids by the action of heat

Compound	Result of the test
Ammonium salt	Ammonia gas is evolved
PbO ₂ , Pb ₃ O ₄ , HgO, KNO ₃ , NaNO ₃	Oxygen gas is evolved
Carbonate and bicarbonate (except K ₂ CO ₃ and Na ₂ CO ₃)	Carbon dioxide is evolved
Hydrated salt	Water vapour evolved
Sulphite or sulphate	Sulphur dioxide gas is evolved
Lead compounds decompose to give lead monoxide; PbO	Brown when hot, yellow when cold
Zinc compounds decompose on heating to give zinc oxide	Yellow when hot white when cold
Copper compound decomposes to give black copper oxide CuO	Black residue

Some naturally occurring acids

Acid	Natural source
Acetic acid	Vinegar
Citric acid	Citrus fruits (oranges; lemons)
Butyric acid	Rancid butter
Hydrochloric acid	Gastric juice
Formic acid	Sting of bees and ants

Acid	Natural source		
Lactic acid	Sour milk		
Malic acid	Apples		
Oleic acid	Olive oil		
Stearic acid	Fats		
Tartaric acid	Grapes; tamarind; apples		
Uric acid	Urine		

V. SIMPLE EXPERIMENTS BASED ON HARD WATER AND SOFT WATER.

Hard Water: Water that contains dissolved bicarbonates, sulphates and chlorides of calcium and

magnesium is called hard water. This water does not form lather with ordinary soap. Examples : sea water, river water, lake water, etc.

and magnesium salts. This water forms lather with ordinary soap. Examples: distilled water and rain water.

Types of Hardness

Temporary Hardness

Contains Ca and Mg bicarbonates

Removal: by boiling followed by **filtration**.

ness Permanent Hardness

Contains Ca and

Mg chlorides and sulphates

Removal: by addition of

- (i) washing soda
- (ii) caustic soda.

Differentiating hard water from soft water.

Experiment I: Two unknown samples A and B, one containing hard water and the other containing soft water, are taken separately in beakers. Ordinary soap is rubbed by the hands into the two samples.

Observation: One sample forms lather easily, while the other sample does not lather.

Conclusion: The sample that lathers easily with ordinary soap is soft water.

Differentiating between temporary and permanent hard water

Experiment II: Provide two unknown samples to the students, one containing temporary and the other containing permanent hard water, in separate beakers.

The given samples of water are boiled slowly, and then filtered. Ordinary soap is rubbed by the hands into each filtered sample.

Observation: One sample lathers with soap, but the other one does not.

Conclusion: The boiled and filtered sample that lathers with soap is temporary hard water.

$$Ca(HCO_3)_2 \longrightarrow CaCO_3 + CO_2 + H_2O$$

bicarbonate present
is temporary

Temparary hard water contains bicarbonate, which gives precipate of insoluble carbonate on boiling. This precipitate is removed by filtration and water becomes soft.

The other sample is permanent hard water.

Object: Softening temporary and permanent hard water by addition of washing soda.

and permanent hard water in separate beakers and add washing soda to both samples. The two solutions are filtered to remove any precipitate formed.

Ordinary soap is rubbed into the filtered solutions.

Observation: Both samples lather easily with ordinary soap.

Conclusion: (i) Temporary hard water is softened by using washing soda.

$$\begin{array}{cccc} Ca(HCO_3)_2 & + & Na_2CO_3 & \longrightarrow & CaCO_3 & + & 2NaHCO_3 \\ Bicarbonate \ present & Washing \\ is \ temporary & Soda & \end{array}$$

(ii) Permanent hard water is softened by using washing soda since permanent hardness is due to the presence of sulphate and chlorides of calcium and magnesium.

$$\begin{array}{c} CaSO_4 + Na_2CO_3 \longrightarrow CaCO_3 + Na_2SO_4 \\ \text{Sulphate present} \\ \text{in hard water} \end{array}$$

Soap and detergents

Soap: It is the sodium or potassium salt of an organic fatty acid. It reacts with hard water forming scum, which is why ordinary soap is wasted.

$$CaSO_4 + 2NaSt (soap) \longrightarrow CaSt_2 + Na_2SO_4$$

sodium sterate Scum

Detergents: They are the sodium salts of alkyl sulphonic acids. *Detergents contain a sulphonic acid group* (SO_3H) instead of a carboxylic group (-COOH).

They can lather even with hard water, since due to the solubility of their calcium and magnesium salts in water they do not form scum.

Comparing the effects of soaps and detergents on hard water

Experiment IV: Take two beakers containing samples of hard water. In one beaker, ordinary soap is rubbed into the water, while in the other beaker, a detergent is rubbed into the water.

Observation: Lather is formed in the beaker in which detergent is used, but lather does not form when ordinary soap is rubbed.

Conclusion: Detergents form lather even with hard water, while ordinary soap is wasted due to formation of scum.

- 1. What do you observe when dilute sulphuric acid is added
 - to the following: (a) Sodium Sulphide
- (b) Sodium Carbonate
- (c) Zinc granules
- 2. Match column A with column B.

Column A

Column B

- (a) Blue salt changes to white and then black
- (i) Ammonium dichromate
- (b) Orange-coloured compound (ii) Iodine changes to green.
- (c) Red compound changes to brown and then yellow.
- (iii) Zinc Nitrate
- (d) White to yellow when hot and white when cold.
- (iv) Copper Sulphate
- (e) Violet solid changes to violet vapours.
- (v) Red Lead
- 3. (a) How is a flame test performed?
 - (b) How will you distinguish:
 - (i) sodium chloride, potassium chloride and calcium chloride?
 - (ii) between soft water and hard water.
 - (iii) temporary hard water and permanent hard water?
- Complete the following table and write your observations.

- (i) temporary hardness? (ii) soft water?
 - (iii) permanent hardness?

4. (a) What do you understand by:

- (b) How are temporary and permanent hardness removed?
- 5. (a) What are soaps and detergents?
 - (b) Why do they differ in their actions?
 - (c) Explain their cleansing actions.
- 6. Compare the effect of soaps and detergents on hard water.
- 7. Copy and complete the following table that refers to the action of heat on some carbonates:

Carbonate	Colour of residue on cooling			
Zinc carbonate				
Lead carbonate				
Copper carbonate	Lancard Control			

- 8. Identify the following substances:
 - (a) An alkaline gas A which gives dense white fumes with hydrogen chloride.
 - (b) Gas C that has an offensive smell as of rotten eggs.
 - (c) Gas D that is colourless and can be used as a bleaching agent.

	Hydrogen sulphide	Ammonia	Sulphur dioxide	Hydrogen chloride
Shake the gas with red litmus solution		4		
Shake the gas with blue litmus solution	Market Mark			
Apply a burning splint to the gas				#

VI. WATER POLLUTION

Water pollution is the introduction of substances of such character and in such quantity that alter the natural quality of water and impair its usefulness.

It affects the health of living organisms and may offend the sense of sight, taste or smell. It refers to

Fig. 9.2 Sources of water pollution

any type of aquatic contamination which renders the water unusable for living organisms.

Polluted water can be identified by the following:

- (i) Foul smell from water
- (ii) Bad taste of drinking water
- (iii) Oil and grease floating on the surface of water
- (iv) Excessive growth of algae and weeds in water.

All over the world, freshwater resources are threatened not only by over-exploitation and poor management but also by ecological degradation.

The main reasons for fresh water pollution are:

- Discharge of untreated waste
- Dumping of industrial effluents
- Run-off from agricultural fields
- Industrial growth, urbanization
- Increasing use of synthetic organic substances.

suffer from problems of chemical discharge into water sources and developing countries face problems of agricultural run-off into water sources. Polluted water causes water-borne diseases and leads to other health-related problems.

SOURCES OF WATER POLLUTION

The main sources of water pollution are:

- Household detergents that are used for washing purposes.
- (ii) Sewage and domestic wastes.
- (iii) **Industrial wastes** contain heavy metals, their salts and organic compounds. All these get accumulated in marine food chains.
- (iv) Oil spills poison sea life.
- (v) Thermal pollution raises the temperature of water and depletes the oxygen present in it, killing fishes and other aquatic organisms.

WATER QUALITY

Determination of water quality may be done in two ways:

- 1. Select a water body and survey its specific parameters throughout the year.
- Select a specific parameter from the list given below and measure it in different types of water bodies.

Fig. 9.3 Polluted water

- pri value Bacteria present
- Hardness of water
 Dissolved oxygen
- Biological Oxygen Demand (BOD)
- Turbidity

These parameters and their effects on water bodies are described below.

pH VALUE

The acidic and basic strengths of solutions are measured on the hydrogen ion scale or pH scale, which gives them a value called pH value.

Concentration of H⁺ ions present in solution decides whether it is acidic or alkaline or neutral.

pH value is obtained with the help of a universal indicator that changes colour at different pH values, as shown below.

pH can be studied with the help of a pH meter. pH value can also be read by matching a wet paper with a standard printed colour scale.

- a solution of pH 7 is neutral (water)
- a solution of pH less than 7 is acidic
- a solution of pH more than 7 is basic

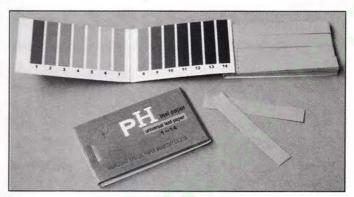


Fig. 9.4 pH papers

• the higher the pH above 7, the stronger the base, and the lower the pH below 7, the stronger the acid.

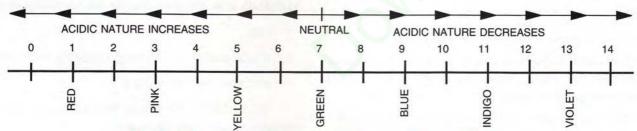


Fig. 9.5 Colour changes in a universal indicator at different pH values

in turn can harm animals and plants living in it. For instance, water coming out of an abandoned coal mine can have a pH value as low as 2, which means it is very acidic and would thus affect any creature surviving in or on it.

Non-polluted water is one that has pH value 7 or close to 7. Thus, if the pH value of water is much higher or lower than 7, that water is polluted and potentially harmful.

For general information

Substance	pH value	
Hydrochloric acid	1.0	
Sulphuric acid	1.2	
Citric acid	2.3	
Lime juice	2.4	
Acetic acid	2.9	
Carbonic acid	3.0	
Pure water	7.0	
Human blood	7.3	
Sodium bicarbonate solution	8.4	
Milk of magnesia	10.5	
Sodium carbonate solution	11.6	
Sodium hydroxide	13.0	

Bacteria

Biological water quality assessment can also be done by measuring growth of bacteria in a water body.

Growth of bacteria can be measured by taking a sample of water in a petri dish and observing it under a microscope 3 or 4 times at regular intervals.

Water free of bacteria is non-polluted water, whereas water with bacterial growth is considered polluted.

Hardness

When water produces little or no lather with soap, it is considered hard water. Hard water is unsuitable for washing clothes, geysers as well as for drinking. Hard water is regarded as polluted water.

Dissolved oxygen

Dissolved oxygen is responsible for survival of aquatic life in water. Dissolved oxygen is breathed by fish and other aquatic life.

Moving water, such as we see in mountain streams and large rivers, tends to contain a lot of of it.

If quantity of oxygen dissolved in stream or river water is less than quantity of dissolved oxygen in normal water, it is said to be polluted.

Quantity of dissolved oxygen can be measured with the help of an instrument called Oxygen Flow Meter.

Fig. 9.6 Instrument for measuring dissolved oxygen

Biological Oxygen Demand (BOD)

Biological oxygen demand is a measure of the oxygen utilized by micro-organisms during oxidation of organic substances. Micro-organisms present in a polluted water sample use oxygen to oxidize waste, and thus BOD increases in polluted water. Amount of oxygen present in pure water is measured first, and then in polluted water. Decrease in the amount of oxygen is the BOD value. Biological oxygen demand increases in polluted water.

Turbidity

Turbidity is the amount of particulate matter suspended in water.

Turbidity measures the scattering effect that suspended solids have on light; the higher the intensity of scattered light, the higher the turbidity. Materials that are responsible for turbidity include:

- clay
- waste matter containing insoluble substances
- microscopic organisms

As turbidity of water increases, its ability to support aquatic life decreases.

- Compared and the standard of the language of the standard of t
- Sewage should be treated fully before we release its into water bodies.
- Chemicals released from factories should be treated to neutralize their toxic contents.
- gravity settlement and screening.
- Organic matter should be removed by oxidation or precipitation.
- Pathogens can be destroyed by ultraviolet radiation.

PROJECT / EXPERIMENT

OBJECT:

To find out the sources of pollution of water bodies in one's locality and determine the quality of water.

Procedure: In this project, survey of a locality is done where a DRAIN exists. The following datas are collected.

The major sources of water pollution were found and they are:

(i) Household wastes.

(ii) Detergents from clothes people wash.

(iii) Wastes from shops.

- (iv) Animals excreta accumulated by the sweeper.
- (v) Wastes generated by a restaurant near the drain, including plastic packaging, bottles, cans, food stuff and clothing.
- (vi) Washes of nearby hospital.

(vii) Wastes from factories.

In order to determine the quality of water,

- 100 cm³ of water is taken in a beaker for finding its pH value
- 500 cm³ of water is taken in another beaker for measuring the oxygen dissolved in it.

Data obtained is as follows:

Month	April	May	June	July	Aug.	Sept.
рН	6.0	5.9	6.6	7.8	7.0	6.8
DO (mg/l)	4-1	3.5	2.1	1.7	1.7	1.5

Conclusion:

- 1. If pH of water is less than 7, i.e. water is acidic, it would affect all living creatures present there. Acidity results mainly from discharge of industrial effluents.
- 2. When Dissolved Oxygen (DO) decreases in a water body, mainly due to the carbon-containing matter present in it, it becomes difficult for aquatic organisms that take dissolved oxygen to survive.

Thus, water quality is considered to be good when there is more dissolved oxygen, and it is considered bad when there is less dissolved oxygen.