

THE LANGUAGE OF CHEMISTRY

SYLLABUS

- (i) Symbol of an element; valency; formulae of radicals and formulae of compounds. Balancing of simple chemical equations.
 - Symbol definition; symbols of the elements used often.
 - Valency definition; hydrogen combination and number of valence electrons of the metals and nonmetals; mono, di, tri and tetra valent elements.
 - Radicals definition; formulae and valencies
 - Compounds name and formulae.
 - Chemical equation definition and examples of chemical equations with one reactant and two or three
 products, two reactants and one product, two reactants and two products and two reactants and three
 or four products; balancing of equations. (by hit and trial method).
- (ii) Relative Atomic Masses (atomic weights) and Relative Molecular Masses (molecular weights): either standard H atom or 1/12th of carbon 12 atom.
 - Definitions
 - · Calculation of Relative Molecular Mass and percentage composition of a compound.

1.1 INTRODUCTION

Chemistry is a branch of science in which we study about matter, *i.e.* what is matter made up of, what is its nature, structure and what changes are observed when it is subjected to different conditions.

Many theories were proposed regarding matter which helped us to discover the real essence of matter, i.e. matter is nothing but a complex relationship between elements. An element is a simple and pure form of matter which cannot be decomposed into simpler substances. All elements are made of atoms, the smallest particles of an element which represent all the properties of an element. A set of atoms of the same type together form the molecule of the element. Molecules can be monoatomic, diatomic and even polyatomic.

Monoatomic molecules – elements having only one atom in their molecules, *e.g.* helium, neon and other inert gas molecules.

Diatomic molecules – elements having two atoms in their molecules, e.g. hydrogen (H_2) , Oxygen (O_2) , Nitrogen (N_2) .

Tetratomic molecules – elements having four atoms in their molecules, $\hat{e}.\hat{g}$. phosphorus (P_4) .

Octatomic molecules – elements having eight atoms in their molecules, e.g. sulphur (S_8) .

Thus, we can say that a molecule is the smallest particle that has capability to exist independently. The molecule of an element exhibits all the properties of that element.

When atoms or molecules of different elements combine, they form the molecule of a compound. To name a few, sodium chloride (NaCl), water (H₂O), ammonia (NH₃) are molecules of compounds.

The names of elements and compounds are abreviated by using certain symbols and formulae.

Before 1600 A.D., alchemists tried to represent the substances that they used for their experiments by different kinds of pictographic symbols, such as a triangle for the earth, a crescent for silver, etc. Dalton used some other types of symbols to represent elements, such as a circle [O] for an oxygen atom, a circle with a dot in its centre [O] for hydrogen, etc.

Later, **Johann Berzelius** suggested that the initial letter of an element written in capitals should represent that particular element, such as O for *oxygen*, H for *hydrogen*, C for *carbon*, and so on. But in some cases, the suggested symbol did not agree with the English name of the element. This was because some of the symbols were based on the Latin names of the elements, as shown in Table 1.1.

on their Latin names

Name of element	Symbol	Latin name
1. Gold	Au	Aurum
2. Silver	Ag	Argentum
3. Mercury	Hg	Hydrargyrum
4. Copper	Cu	Cuprum
5. Lead	Pb	Plumbum
6. Iron	Fe	Ferrum
7. Sodium	Na	Natrium
8. Potassium	K	Kalium
9. Tin	Sn	Stannum
10. Antimony	Sb	Stibium
11. Tungsten	W	Wolfram

However, the method suggested by him laid the basis of the IUPAC (International Union of Pure and Applied Chemistry) system of chemical symbols and formulae.

1.2 CHEMICAL SYMBOLS

A **symbol** is the short form that stands for the atom of a specific element or the abbreviations used for the names of elements.

Each element is denoted by a symbol, which is usually the first letter of its name in English or Latin, written in capital.

Example : Sulphur, an element, is denoted by the symbol 'S'. Similarly, hydrogen is denoted by the symbol 'H'.

However, when the first letter of more than one element is the same, the elements are denoted by two letters. The first letter is written in *capital*, while the second one is written in *small*.

Example: Carbon, cobalt, copper, calcium, cadmium, chromium, and chlorine are elements whose first letter is C. Therefore, only carbon is denoted by the symbol 'C'. Cobalt is denoted by two letters 'Co'. Copper is denoted by the two letters 'Cu' [taken from its Latin name cuprum]. Calcium by Ca, Cadmium by Cd, Chromium by Cr and Chlorine by Cl.

A symbol is not merely an abreviation for the name of an element but also has significance.

Significance of a symbol

It represents:

(i) Name of the element

Name in English	Symbol	Name in English	Symbol
Magnesium	Mg	Hydrogen	Н
Aluminium	Al	Nitrogen	N
Calcium	Ca	Oxygen	0
Chromium	Cr	Fluorine	F
Manganese	Mn	Chlorine	Cl
Cobalt	Co	Bromine	Br
Nickel	Ni	Iodine	I
Zinc	Zn	Carbon	C
Silver	Ag	Sulphur	S
Barium	Ba	Phosphorus	P
Arsenic	As	Boron	В
Platinum	Pt	Silicon	Si
Radium	Ra	Arsenic	As
Uranium	U	Helium	Не
Lithium	Li	Neon	Ne
Germanium	Ge	Argon	Ar

- (ii) One atom of the element
- (iii) Quantity of the element equal in mass to its atomic mass or gram atomic mass.

For example, the symbol N stands for

- (i) The element Nitrogen
- (ii) One atom of Nitrogen
- (iii) 14 parts by weight of Nitrogen. This weight being the atomc weight of the element.

Note: Be careful about capital and small alphabets. For example: Co means the element cobalt. CO means the compound carbon monoxide.

1.3 FORMULA

Atoms of elements combine to form molecules. So it is possible to represent the molecules in terms of symbols of the constituent atoms. The symbolic representation of a molecule is known as **formula or molecular formula.**

A molecular formula also known as **chemical formula** employs symbols to denote the molecule of an element or of a compound.

A molecule of an element may contain one or more atoms of it. *For example* a molecule of elements hydrogen, oxygen, nitrogen, chlorine, bromine, iodine, contains two atoms and are written as H₂, O₂, N₂, Cl₂ Br₂ and I₂ respectively.

In case of a compound, the molecule containing

represented by placing symbols of the elements present in it side by side indicating their numbers written in subscript. Thus, NH₄Cl represents one molecule of ammonium chloride containing one atom of nitrogen four atoms of hydrogen and one atom of chlorine.

Na₂CO₃ denotes one molecule of sodium carbonate which contains two atoms of sodium, one atom of carbon and three atoms of oxygen.

2H₂O represents two molecules of water *i.e.* dihydrogen oxide, each molecule containing two atoms of hydrogen and one atom of oxygen.

Thus by looking at a formula, we understand the ratio in which the different atoms are united to form the molecule.

Significance of molecular formula

The molecular formula of a compound has quantitative significance. It represents:

- (i) both the molecule and the molecular mass of the compound.
- (ii) the respective numbers of different atoms present in one molecule of the compound.
- (iii) the ratios of the respective masses of the elements present in the compound.

For example, the formula CO2 means that:

- (i) the molecular formula of carbon dioxide is CO2;
- (ii) each molecule contains one carbon atom joined by chemical bonds with two oxygen atoms;
- (iii) the molecular mass of carbon dioxide is 44, given that the atomic mass of carbon is 12 and that of oxygen is 16.

1.4 VALENCY

Valency is the combining capacity of an atom or of a radical.

Valency is measured in terms of hydrogen atoms or oxygen atoms. It is the number of hydrogen atoms or double the number of oxygen atoms that can combine with it.

Since no other element has combining capacity less than that of hydrogen, its valency is taken to be one (1) and is considered a standard.

Modern Definition of Valency

The number of electrons, that atom can lose, gain or share during a chemical reaction is called its

valency. (For details refer to chapter Atomic Structure).

Elements with one, two or three electrons in their outermost shell (valence shell) are usually **metals**. Electrons in the outermost shell are known as *valence electrons*. To attain stable electronic configuration, these atoms lose their valence electrons and form positive ions*.

Positive ions are known as cations.

Elements with five, six or seven electrons in their outermost shell are normally **non-metals**. To attain stability, these atoms have to have eight electrons in their outermost orbit; so they gain electrons.

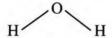
Note: Out of the elements that have four electrons in the outermost orbit — Carbon is a non-metal, Silicon and Germanium are metalloid and rest are metals.

Cl + e⁻
$$\rightarrow$$
 Cl⁻ (univalent)
(2, 8, 7) 2, 8, 8
O + 2e⁻ \rightarrow O²⁻ (divalent)
(2, 6) 2, 8
N + 3e⁻ \rightarrow N³⁻ (trivalent)
(2, 5) 2, 8

Negative ions are known as anions.

No. of electron(s) in outermost shell	1	2	3	4	5	6	7	8
Valency	1	2	3	4	3	2	1	0

The valency of an element or of a radical is the number of hydrogen atoms that will combine with or displace one atom of that element or radical.


Examples of sharing of atoms:

(i) One atom of **chlorine** combines with one hydrogen atom to form a molecule of hydrogen chloride. So, the valency of chlorine is **one**.

$$H - Cl$$

Ions are charged particles which are formed by loss or gain of electrons

hydrogen to form a molecule of water. So, the valency of oxygen is **two**.

(iii) In an ammonia molecule, one atom of **nitrogen** combines with 3 atoms of hydrogen. So, the valency of nitrogen is **three**.

(iv) In a methane molecule, one **carbon** atom combines with 4 hydrogen atoms. So, the valency of carbon is **four**.

Variable valency

Certain elements exhibit more than one valency, *i.e.* they show variable valency.

Reasons for variable valency

An atom of an element can sometimes lose more electrons than are present in its valence shell, *i.e.* there is a loss of electrons from the penultimate shell too. Therefore, such an element is said to exhibit variable valency.

If an element exhibits two different positive valencies, then we use the suffix "ous" for the lower valency and the suffix "ic" for the higher valency. Modern chemists use Roman numerals in place of these trivial names. For example, SnCl₂, i.e. stannous chloride is written as Tin (II) chloride, SnCl₄, i.e. stannic chloride is written as Tin (IV) chloride.

Non-metals like nitrogen, phosphorus and sulphur also show variable valency. Nitrogen and phosphorus exhibit valencies of 3 and 5 while sulphur exhibits valencies of 2, 4 and 6.

Metal Valency Name of compound formed **Formula** Ferrous [Iron (II)] oxide FeO Iron 13 Ferric [Iron (III)] oxide Fe,O, Cuprous [Copper (I)] oxide Cu,O Cupric [Copper (II)] oxide CuO

[Mercury (I)] oxide

[Mercury (II)] oxide HgO

Hg,O

Mercurous

Mercuric

1.5 RADICALS

The molecule of a compound is usually made up of two parts, these parts separately are known as radicals. For example, molecule of potassium chloride has two parts, potassium and chloride, so potassium is one radical and chloride is the other radical; similarly magnesium sulphate has magnesium and sulphate as radicals.

A radical is an atom or a group of atoms of the same or of different elements that behaves as a single unit with a positive or negative charge.

A radical is called **simple radical** when it is an atom only like sodium (Na⁺) and magnesium (Mg²⁺). It is known as a **compound radical** when it is made up of a group of two or more different atoms (**polyatomic**) like sulphate (SO_4^{2-}) made up of one sulphur atom and four oxygen atoms.

Note: An acid reacts with a base to produce salt and water as a result of neutralisation.

In the formation of potassium chloride, the **potassium** radical has been contributed by the base potassium hydroxide and is therefore called **basic radical**, the chloride radical has been contributed by hydrochloric acid and is, therefore, termed an **acid radical**.

When a salt is dissolved in water, it splits up into constituent radicals, the basic radicals are found to carry positive charge and so are termed **electropositive radicals** or **cations**. The other part carries negative charge and so are called **electronegative radicals** or **anions**.

in magnesium sulphate, magnesium is electropositive and sulphate is electronegative radical.

List of basic radicals is given in Table 1.3.

List of acid radicals is given in Table 1.4.

Table 1.3: List of some common electrovalent positive ions (basic radicals)

Monovalent electropos	sitive	Divalent electropositiv	'e	Trivalent electropositive			
1. Ammonium	NH ₄ +	1. Argentic [Silver(II)]	Ag ²⁺	1. Aluminium	A1 ³⁺		
2. Aurous [Gold (I)]	Au ⁺	2. Barium	Ba ²⁺	2. Arsenic	As ³⁺		
3. Argentous [Silver (I)]	Ag ⁺	3. Calcium	Ca ²⁺	3. Auric [Gold (III)]	Au ³⁺		
4. Cuprous [Copper (I)]	Cu+	4. Cupric [Copper(II)]	Cu ²⁺	4. Bismuth	Bi ³⁺		
5. Hydrogen	H ⁺	5. Ferrous [Iron (II)]	Fe ²⁺	5. Chromium	Cr3+		
6. Lithium	Li+	6. Magnesium	Mg ²⁺	6. Ferric [Iron (III)]	Fe ³⁺		
7. Sodium	Na ⁺	7. Manganese	Mn ²⁺				
8. Potassium	K ⁺	8. Mercuric [Mercury (II)]	Hg ²⁺	Tetravalent electrop	ositive		
9. Mercurous [Mercury (I)]	Hg ⁺	9. Nickel	Ni ²⁺	1. Plumbic [Lead (IV)]	Pb ⁴⁺		
		10. Plumbous [Lead (II)]	Pb ²⁺	2. Platinic [Platinium (IV)]	Pt ⁴⁺		
		11. Platinous [Platinum (II)]	Pt ²⁺	3. Stannic [Tin (IV)]	Sn ⁴⁺		
		12. Stannous [Tin (II)]	Sn ²⁺				
		13. Zine	Zn ²⁺				

Table 1.4: List of some common electrovalent negative ions (acid radicals)

	Monovalent electronegative			Divalent electro	negative		Trivalent electr	onegative
1.	Acetate	CH ₃ COO-	1.	Carbonate	CO ₃ ²⁻	1.	Arsenate	AsO ₄ ³⁻
2.	Bicarbonate or Hydrogen carbonate	HCO ₃ -	2.	Dichromate	Cr ₂ O ₇ ²⁻	2.	Nitride	N ³ -
3.	Bisulphide or Hydrogen sulphide	HS-	3.	Oxide	O ² -	3.	Aluminate	AlO ₃ ³ -
4.	Bisulphate or Hydrogen sulphate	HSO ₄ -	4.	Peroxide	O ₂ ²⁻	4.	Arsenite	AsO ₃ ³⁻
5.	Bisulphite or		5.	Sulphate	SO ₄ ²⁻	5.	Phosphide	P ³ -
6.	Hydrogen sulphite Bromide	HSO ₃ ⁻ Br ⁻	6.	Sulphite	SO ₃ ²⁻	6.	Phosphite	PO ₃ ³⁻
7.	Chloride	Cl-	7.	Sulphide	S ² -	7.	Phosphate	PO ₄ 3-
8.	Permanganate	MnO ₄	8.	Silicate	SiO ₃ ²⁻	8.	Borate	BO ₃ 3-
9.	Fluoride	F	9.	Thiosulphate	S ₂ O ₃ ²⁻			
10.	Hydride	H-	10.	Zincate	ZnO ₂ ²⁻		Tetravalent ele	ectronegative
11.	Hydroxide	OH-	11.	Plumbite	PbO ₂ ²⁻	1.	Carbide	C ⁴
12.	Iodide	I-	12.	Stannate	SnO ₃ ²⁻	2.	Ferrocyanide	Fe(CN) ₆ ⁴
13.	Cyanide	CN-	13.	Manganate	MnO ₄ ²⁻	1911		
14.	Nitrate	NO ₃ -	14.	Chromate	CrO ₄ ²⁻	100		
15.	Nitrite	NO ₂ -	15.	Oxalate	(COO) ₂ ²⁻	Paris I		
16.	Chlorite	ClO ₂ -						
17.	Hypochlorite	ClO-						
18.	Chlorate	ClO ₃ -				The contract		
19.	Perchlorate	ClO ₄ -						
20.	Meta-aluminate	AlO ₂						

(valency), and it is according to this combining power that they form chemical formulae.

For example, in the compound ammonium carbonate $(NH_4)_2CO_3$ ammonium (NH_4^+) is a basic radical with combining power 1 and carbonate (CO_3^{2-}) is an acidic radical with combining power 2.

1.6 WRITING CHEMICAL FORMULAE

The following steps should be taken while attempting to write a formula. The method is called **criss-cross method**.

- (i) Write the symbols side by side, basic radical is written first and then acidic radical.
- (ii) Write the valency of each atom on top of its symbol.
- (iii) Divide the valency numbers by their highest common factor (H.C.F.), if any, to get the simple ratio. Ignore the (+) or (-) symbols of the radicals. Interchange the valencies of the radicals.

the lower right of the radicals. If the radical is a group of atoms and has a valency number more than 1, enclose it within brackets.

Based on the steps, mentioned alongside formulae can be written in the following way.

Name of Compound	Symbols with valencies	Exchange of valency	Formula
Magnesium chloride	Mg ²⁺ Cl ¹⁻	$Mg^2 \times Cl^1$ $Mg_1 \times Cl_2$	MgCl ₂
Calcium oxide	Ca ²⁺ O ²⁻ [Dividing by H.C.F.	$Ca^2 \times O^2$ $Ca_2 \times O_2$	CaO
Aluminium hydroxide	it becomes Ca ¹⁺ O ¹⁻ Al ³⁺ (OH) ¹⁻	$Ca_2 \bowtie_{O_2} O_2$ $Al^3 \bowtie_{(OH)^1} OH)_3$	Cancelling common facto Al (OH) ₃
Phosphorus trioxide	P ³⁺ O ²⁻	$\begin{array}{c} P^3 \\ P_2 \swarrow O_3 \end{array}$	P ₂ O ₃
Sodium meta aluminate	Na ⁺ AlO ₂ ⁻	$Na_1^+ \times AlO_2^- $ $Na_1 \times AlO_2^- $ $(AlO_2)_1$	NaAlO ₂
Sodium aluminate	Na ⁺ AlO ₃ ³ -	Na ⁺ Na ₃ AlO ₃ ³ (AlO ₃) ₁	Na ₃ AlO ₃

IMPORTANT FORMULAE

Chemical Name	Symbol with charge	Formula	Chemical Name	Symbol with charge	Formula
Potassium chloride	K1+C11-	KCl	Potassium plumbite	K ¹⁺ PbO ₂ ²⁻	K ₂ PbO ₂
Potassium bromide	K ¹⁺ Br ¹⁻	KBr	Sodium chloride	Na ¹⁺ Cl ¹⁻	NaCl
Potassium iodide	K ¹⁺ I ¹⁻	KI	Sodium hydroxide	Na ¹⁺ OH ¹⁻	NaOH
Potassium hydroxide	K1+OH1-	KOH	Sodium nitrite	Na ¹⁺ NO ₂ ¹⁻	NaNO ₂
Potassium nitrite	K ¹⁺ NO ₂ ¹⁻	KNO,	Sodium nitrate	Na ¹⁺ NO ₃ ¹⁻	NaNO ₃
Potassium nitrate	K1+NO31-	KNO ₃	Sodium hydrogen	Na ¹⁺ HCO ₃ ¹⁻	NaHCO ₃
Potassium hydrogen	K1+HCO1-	KHCO ₃	carbonate		
carbonate			Sodium hydrogen sulphite	Na ¹⁺ HSO ₃ ¹⁻	NaHSO ₃
Potassium hydrogen	K ¹⁺ HSO ₃ ¹⁻	KHSO ₃	Sodium hydrogen sulphate	Na ¹⁺ HSO ₄ ¹⁻	NaHSO ₄
sulphite			Sodium metaluminate	Na ¹⁺ AlO ₂ ¹⁻	NaAlO ₂
Potassium hydrogen	K ¹⁺ HSO ₄ ¹⁻	KHSO ₄	Sodium sulphite	Na ¹⁺ SO ₃ ²⁻	Na ₂ SO ₃
sulphate			Sodium sulphate	Na1+SO ₄ 2-	Na ₂ SO ₄
Potassium metaluminate	K ¹⁺ AlO ₂ ¹⁻	KAlO ₂	Sodium carbonate	Na ¹⁺ CO ₃ ²⁻	Na ₂ CO ₃
Potassium permanganate	K ¹⁺ MnO ₄ ¹⁻	KMnO ₄	Sodium zincate	Na ¹⁺ ZnO ₂ ²⁻	Na ₂ ZnO ₂
Potassium sulphite	K ¹⁺ SO ₃ ²⁻	K ₂ SO ₃	Sodium plumbite	Na ¹⁺ PbO ₂ ²⁻	Na ₂ PbO ₂
Potassium sulphate	K ¹⁺ SO ₄ ²⁻	K ₂ SO ₄	Silver chloride	Agl+Cl1-	AgCl
Potassium carbonate	K1+CO ₃ 2-	K ₂ CO ₃	Ammonium chloride	NH ₄ ¹⁺ Cl ¹⁻	NH ₄ Cl
Potassium dichromate	K ¹⁺ Cr ₂ O ₇ ²⁻	K ₂ Cr ₂ O ₇	Ammonium sulphate	NH ₄ ¹⁺ SO ₄ ²⁻	(NH ₄) ₂ SO
Potassium zincate	K1+ZnO2-	K ₂ ZnO ₂	Ammonium hydroxide	NH ₄ ¹⁺ OH ¹⁻	NH ₄ OH

Cont ...

Calcium chloride	Ca ²⁺ CI ¹⁻	CaCl ₂	Lead [II] sulphate	Pb2 SU ₄	PDSU ₄
Calcium hydroxide	Ca ²⁺ OH ¹⁻	Ca(OH) ₂	Lead [II] oxide	Pb ²⁺ O ²⁻	PbO
Calcium nitrate	Ca ²⁺ NO ₃ ¹⁻	Ca(NO ₃) ₂	Manganese chloride	Mn ²⁺ Cl ¹⁻	MnCl ₂
Calcium hydrogen	Ca ²⁺ HCO ₃ ¹⁻	Ca(HCO ₃) ₂	Manganese sulphate	Mn ²⁺ SO ₄ ²⁻	MnSO ₄
carbonate			Aluminium chloride	Al ³⁺ Cl ¹⁻	AlCl ₃
Calcium hydrogen sulphite	Ca ²⁺ HSO ₃ ¹⁻	Ca(HSO ₃) ₂	Aluminium sulphate	Al ³⁺ SO ₄ ²⁻	Al ₂ (SO ₄) ₃
Calcium sulphite	Ca ²⁺ SO ₃ ²⁻	CaSO ₃	Aluminium hydroxide	Al ³⁺ OH ¹⁻	Al(OH) ₃
		Very Miles	Aluminium sulphide	Al ³⁺ S ²⁻	Al ₂ S ₃
Calcium sulphate	Ca ²⁺ SO ₄ ²⁻	CaSO ₄	Aluminium oxide	Al ³⁺ O ²⁻	Al ₂ O ₃
	2. 2		Chromium chloride	Cr ³⁺ Cl ¹⁻	CrCl ₃
Calcium carbonate	Ca ²⁺ CO ₃ ²⁻	CaCO ₃	Chromium sulphate	Cr3+SO ₄ 2-	Cr ₂ (SO ₄) ₃
	0.2402		Chromium oxide	Cr ³⁺ O ²⁻	Cr ₂ O ₃
Calcium oxide	Ca ²⁺ O ²⁻	CaO	Copper [I] (cuprous)		
Calcium silicate	Ca ²⁺ SiO ₃ ²⁻	CaSiO ₃	Copper [I] chloride	Cu ¹⁺ Cl ¹⁻	CuCl
Calaines siteida	Ca ²⁺ N ³⁻	Co N	Copper [I] oxide	Cu ¹⁺ O ²⁻	Cu ₂ O
Calcium nitride	Ca- N	Ca ₃ N ₂	Copper [I] sulphide	Cu ¹⁺ S ²⁻	Cu ₂ S
Magnesium chloride	Mg ²⁺ Cl ¹⁻	MgCl ₂	Copper [II] (cupric)		
Wagnestum emoride	IVIG CI	wigCi ₂	Copper [II] chloride	Cu ²⁺ Cl ¹⁻	CuCl ₂
Magnesium hydroxide	Mg ²⁺ OH ¹⁻	Mg(OH)	Copper [II] hydroxide	Cu ²⁺ OH ¹⁻	Cu(OH) ₂
		8(72	Copper [II] nitrate	Cu ²⁺ NO ₃ ¹⁻	Cu(NO ₃) ₂
Magnesium nitrate	Mg ²⁺ NO ₃ ¹⁻	Mg(NO ₃) ₂	Copper [II] sulphate	Cu ²⁺ SO ₄ ²⁻	CuSO ₄
	,	3.2	Copper [II] sulphide	Cu ²⁺ S ²⁻	CuS
Magnesium oxide	Mg ²⁺ O ²⁻	MgO	Copper [II] oxide	Cu ²⁺ O ²⁻	CuO
			Iron [II] (ferrous)		
Magnesium nitride	Mg ²⁺ N ³⁻	Mg ₃ N ₂	Iron [II] chloride	Fe ²⁺ Cl ¹⁻	FeCl ₂
			Iron [II] hydroxide	Fe ²⁺ OH ¹⁻	Fe(OH) ₂
Zinc chloride	Zn ²⁺ Cl ¹⁻	ZnCl ₂	Iron [II] nitrate	Fe ²⁺ NO ₃ ¹⁻	Fe(NO ₃) ₂
	A		Iron [II] sulphate	Fe ²⁺ SO ₄ ²⁻	FeSO ₄
Zinc hydroxide	Zn ²⁺ OH ¹⁻	Zn(OH) ₂	Iron [II] sulphide	Fe ²⁺ S ²⁻	FeS
Zinc nitrate	Zn ²⁺ NO ₃ ¹⁻	Zn(NO ₃) ₂	Iron [II] oxide	Fe ²⁺ O ²⁻	FeO
Zinc sulphate	Zn ²⁺ SO ₄ ²⁻	ZnSO ₄	Iron [III] (ferric)		
Zinc carbonate	Zn ²⁺ CO ₃ ²⁻	ZnCO ₃	Iron [III] chloride	Fe ³⁺ Cl ¹⁻	FeCl ₃
Zinc oxide	Zn ²⁺ O ²⁻	ZnO	Iron [III] sulphate	Fe ³⁺ SO ₄ ²⁻	Fe ₂ (SO ₄) ₃
Lead [II] chloride	Pb ²⁺ Cl ¹⁻	PbCl ₂	Iron [III] hydroxide	Fe ³⁺ OH ¹⁻	Fe(OH) ₃
Lead [II] bromide	Pb ²⁺ Br ¹⁻	PbBr ₂	Iron [III] sulphide	Fe ³⁺ S ²⁻	Fe ₂ S ₃
Lead [II] hydroxide	Pb ²⁺ OH ¹⁻	Pb(OH) ₂	Iron [III] nitrate	Fe ³⁺ NO ₃ ¹⁻	Fe(NO ₃) ₃
Lead [II] nitrate	Pb ²⁺ NO ₃ ¹⁻	Pb(NO ₃) ₂	Iron [III] oxide	Fe ³⁺ O ²⁻	Fe ₂ O ₃

1.7 NAMING CERTAIN COMPOUNDS

1. A metal and a non-metal: The metal is written first and then the non-metal, the suffix ide is added to the non-metal.

For example:

Calcium + Nitrogen → Calcium nitride [Ca₃N₂]

2. Two non-metals: The prefix tri or tetra or penta, etc. is added, as the case may be.

For example, PCl₃ is phosphorus trichloride and PCl₅ is phosphorus pentachloride.

3. Two elements and oxygen: Oxygen is represented at the end of the formula.

The name of the compound depends on the number of oxygen atoms present in the compound.

atoms is less than 2.

NaClO - Sodium hypochlorite

The suffix 'ite' is used if the number of oxygen atoms is 2.

NaClO₂ - Sodium chlorite

The suffix 'ate' is used if the number of oxygen atoms is 3.

NaClO₃ - Sodium chlorate

The prefix per is used when the number of oxygen atoms is more than 3.

NaClO₄ - Sodium perchlorate

4. Naming of acids

(a) Names of binary acids are given by adding the prefix 'hydro' and the suffix 'ic' to the name of the second element.

- Examples: (i) HCl is hydrochloric acid
 - (ii) HF is hydrofluoric acid
- (b) Names of acids containing radicals of polyatomic groups are given on the basis of the second element present in the molecule, and the prefix 'hydro' is not used.

- Examples: (i) In H₂SO₄, the second element is sulphur, hence the name sulphuric acid.
 - (ii) In HNO₃, the second element is nitrogen, hence the name nitric acid.
 - (iii) In H₃PO₄, the second element is phosphorus, hence the name phosphoric acid.

'ous' is used instead of 'ic'. Thus H₂SO₃ is sulphurous acid, HNO2 is nitrous acid.

5. Trivial names

There are certain compounds with names that do not follow any systematic rule. Such names are called trivial or common names, and they are widely accepted.

> Examples: (i) Nitrogen trihydride is called ammonia [NH₃]

> > (ii) Hydrogen monoxide or dihydrogen oxide is called water [H₂O].

TO CALCULATE THE VALENCY FROM THE **FORMULA**

The valency of elements can be determined based on the knowledge of the valencies of negative radicals and of the fact that the valency of:

Hydrogen [H] = 1; Oxygen [O] = 2;Chlorine [C1] = 1

	_
Procedure to find the valency	Example
1. Write the given formula.	NO ₂
Interchange the subscript and write it as superscript.	N ² O ¹
3. The valency of oxygen is taken as 2, therefore, multiply both the superscripts by 2.	N2×2O1×2
4. The result gives the valency of the elements.	N ⁴ O ²

Thus, from the formula NO₂, we find that the valency of nitrogen is 4.

EXCERCISE 1(A)

- 1. What is a symbol? What information does it convey?
- 2. Why is the symbol S for sulphur, but Na for sodium and Si for silicon?
- 3. If the symbol for Cobalt, Co, were written as CO, what would be wrong with it?
- 4. What do the following symbols stand for?
 - (a) H
- (b) H₂
- (c) 2H.
- 5. (a) Explain the terms 'valency' and 'variable valency'.
 - How are the elements with variable valency named? Explain with an example.

- 6. Give the formula and valency of:
 - (a) aluminate
 - (b) chromate
 - (c) aluminium
 - (d) cupric
- 7. What is a chemical formula? What is the rule for writing a formula correctly?
- 8. What do you understand by the following terms?
 - (a) Acid radical
- (b) Basic radical

-		
Compound		Formula
Boric acid	(i)	NaOH
Phosphoric acid	(ii)	SiO ₂
Nitrous acid	(iii)	Na ₂ CO ₃
Nitric acid	(iv)	КОН
Sulphurous acid	(v)	CaCO ₃
Sulphuric acid	(vi)	NaHCO ₃
Hydrochloric acid	(vii)	H ₂ S
Silica (sand)	(viii)	H ₂ O
Caustic soda (sodium hydroxide)	(ix)	PH ₃
Caustic potash (potassium hydroxide)	(x)	CH ₄
Washing soda (sodium carbonate)	(xi)	NH ₃
Baking soda (sodium bicarbonate)	(xii)	HCl
Lime stone. (calcium carbonate)	(xiii)	H ₂ SO ₃
Water	(xiv)	HNO ₃
Hydrogen sulphide	(xv)	HNO ₂
Ammonia	(xvi)	H ₃ BO ₃
Phosphine	(xvii)	H ₃ PO ₄
Methane		H ₂ SO ₄
	Phosphoric acid Nitrous acid Nitric acid Sulphurous acid Sulphuric acid Hydrochloric acid Silica (sand) Caustic soda (sodium hydroxide) Caustic potash (potassium hydroxide) Washing soda (sodium carbonate) Baking soda (sodium bicarbonate) Lime stone. (calcium carbonate) Water Hydrogen sulphide Ammonia Phosphine Methane	Phosphoric acid (ii) Nitrous acid (iii) Nitrous acid (iv) Sulphurous acid (v) Sulphurous acid (vi) Hydrochloric acid (vii) Silica (sand) (viii) Caustic soda (ix) (sodium hydroxide) Caustic potash (x) (potassium hydroxide) Washing soda (xi) (sodium carbonate) Baking soda (xii) (sodium bicarbonate) Lime stone. (xiii) (calcium carbonate) Water (xiv) Hydrogen sulphide (xv) Ammonia (xvii) Phosphine (xviii)

- 10. Select the basic and acidic radicals in the following compounds.
 - (a) MgSO₄
- (b) $(NH_4)_2SO_4$
- (c) Al₂(SO₄)₃
- (d) ZnCO₂

- (e) Mg(OH),
- 11. The valency of an element A is 3 and that of element B is 2. Write the formula of the compound formed by the combination of A and B.

Ammonium and Zinc.

- 13. Write the chemical names of the following compounds:
 - (a) $Ca_3(PO_4)_2$
- (b) K₂CO₃
- (c) K_2MnO_4
- (d) $Mn_3(BO_3)_2$
- (e) Mg (HCO₃)₂
- (f) Na₄Fe(CN)₆
- (g) Ba (ClO₃)₂
- (h) Ag₂SO₃
- (i) (CH₃COO)₂Pb
- (j) Na₂SiO₃
- 11. Write the basic radicals and acidic radicals of the following and then write the chemical formulae of these compounds.
 - (a) Barium sulphate
- (b) Bismuth nitrate
- (c) Calcium bromide
- (d) Ferrous sulphide
- (e) Chromium sulphate
- (f) Calcium silicate
- (g) Potassium ferrocyanide
- (h) Stannic oxide
- (i) Calcium silicate
- (j) Magnesium phosphate (k) Sodium zincate
 - (m) Sodium thiosulphate
- (1) Stannic phosphate
- (n) Potassium manganate
 - (o) Nickel bisulphate
- 12. Give the names of the following compounds.
 - (a) NaClO
- (b) NaClO₂
- (c) NaClO₃
- (d) NaClO₄
- 13. Complete the following statements by selecting the correct option:
 - (a) The formula of a compound represents
 - (i) an atom
- (ii) a particle
- (iii) a molecule
- (iv) a combination.
- (b) The correct formula of aluminium oxide is
 - (i) AlO₃
- (ii) AlO₂
- (iii) Al₂O₃
- (c) The valency of nitrogen in nitrogen dioxide (NO₂) is
 - (i) one
- (ii) two
- (iii) three

- (iv) four.

1.9 CHEMICAL EQUATION

A chemical equation is the symbolic representation of a chemical reaction using the symbols and formulae of the substances involved in the reaction.

For example: Burning of coal in air is a chemical reaction in which a new substance, carbon dioxide, is formed.

The reaction can be represented by either a word equation or a chemical equation (using formulae and symbols), as shown below:

Word equation:

Carbon + Oxygen — heat → Carbon dioxide

Chemical equation:

$$C + O_2 \xrightarrow{heat} CO_2$$

Steps involved in writing a chemical equation:

- (i) Write the symbols or the formulae of the reactants on the left hand side, with a (+) sign between them.
- (ii) Write the symbols or the formulae of the **products** on the right hand side, with a (+) sign between them.

reactant side and the product side.

(iv) Represent the reactants and the products in their molecular forms [because their atomic forms are usually neither stable nor capable of separate existence].

For example:

Sodium reacts with water to form sodium hydroxide and hydrogen.

$$2Na + 2H_2O \rightarrow 2NaOH + H_2$$

A chemical equation tells us what substances are involved in a given reaction (**REACTANTS**) and what are the substances formed as a result of the reaction (**PRODUCTS**).

For example:

$$\begin{array}{ccc} \text{CuSO}_4 + 2\text{NaOH} \rightarrow \text{Cu(OH)}_2 + \text{Na}_2\text{SO}_4 \\ & & & & & & \\ \text{Reactants} & & & & & \\ & & & & & & \\ \end{array}$$

In the given equation copper sulphate and sodium hydroxide (REACTANTS) react to produce copper hydroxide and sodium sulphate (PRODUCTS).

Chemical reactions may involve:

- (i) one reactant and two or more products
- (ii) two reactants and one product
- (iii) two reactants and two products
- (iv) two reactants and three or more products
 - (i) one reactant and two or more products

Examples:

- (a) $CaCO_3 \rightarrow CaO + CO_2$
- (b) $2\text{Pb}(\text{NO}_3)_2 \rightarrow 2\text{PbO} + 4\text{NO}_2 + \text{O}_2$
- (ii) two reactants and one product

Examples:

- (a) $NH_3 + HCl \rightarrow NH_4Cl$
- (b) $N_2 + 3H_2 \rightarrow 2NH_3$
- (iii) two reactants and two products

Examples:

- (a) $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$
- (b) $Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 + 2NaCl$
- (iv) two reactants and three or more products Examples:
- (a) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2$
- (b) $2\text{KMnO}_4 + 16\text{HCl} \rightarrow 2\text{KCl} + 2\text{MnCl}_2 + 8\text{H}_2\text{O} + 5\text{Cl}_2$

Skeleton equation: It is an equation that represents a chemical change but is unbalanced. In

on the two sides are not equal. The following example will make the point clear.

$$KNO_3 \rightarrow KNO_2 + O_2$$

In the above chemical equation, the number of oxygen atoms in the reactant (KNO_3), on the left side, is not equal to the number of oxygen atoms in the products formed ($KNO_2 + O_2$), on the right side.

1.9.1 Balanced equation

It is an equation in which the total number of atoms of each element in the reactants, on the left side of the equation, is the same as the number of atoms in the products formed, on the right side of the equation.

Examples:

(a) $CaCO_3 \rightarrow CaO + CO_2$

In this equation, the number of atoms of Ca, C and O on both sides is the same, *i.e.* the equation is balanced.

(b) $KNO_3 \rightarrow KNO_2 + O_2$

In this equation, since the number of atoms of oxygen on both sides is not the same, the equation is not balanced. The balanced form of the equation is:

$$2KNO_3 \rightarrow 2KNO_2 + O_2$$

Why should an equation be balanced?

An equation must be balanced in order to comply with the "Law of Conservation of Matter", which states that matter is neither created nor destroyed in the course of a chemical reaction. An unbalanced equation would imply that atoms have been created or destroyed.

1.9.2 How to balance a chemical equation

There are two methods of balancing an equation:

- (i) Hit and trial method
- (ii) Partial equation method

1. Balancing by hit and trial method

This method consists of counting the number of atoms of each element on both sides and trying to equalize them. Take the following steps:

- (i) Count the number of times (frequency) an element occurs on either side.
- (ii) The element with the least frequency of occurrence is balanced first.

frequency, the metallic element is balanced first.

Example 1: Balance the following equation $Cu + H_2SO_4 \rightarrow CuSO_4 + SO_2 + H_2O$

Solution:

Step 1: Count the number of atoms of all the elements on either side of the chemical equation.

Element	Reactant side	Product side
Cu	1	1
H	2	2
S	1	2
0	4	7

Step 2: Copper and hydrogen are equal on both sides so to equalise sulphur atoms multiply H₂SO₄ by 2.

$$\text{Cu} + 2\text{H}_2\text{SO}_4 \rightarrow \text{CuSO}_4 + \text{SO}_2 + \text{H}_2\text{O}$$

Step 3: To equalise hydrogen atoms, multiply H₂O by 2.

This gives the balanced equation.

$$\mathrm{Cu} + 2\mathrm{H}_2\mathrm{SO}_4 \rightarrow \mathrm{CuSO}_4 + \mathrm{SO}_2 + 2\mathrm{H}_2\mathrm{O}$$

Example 2: Balance the following skeleton equation.

 $As_2O_3 + SnCl_2 + HCl \rightarrow SnCl_2 + As + H_2O$

Solution :

Step 1: Count the number of atoms of all the elements on both sides of the equation.

Element	Reactant side	Product side
As	2	1
Sn	1	1
Cl	3	2
H	1	2
0	3	1

Step 2: To equalise As and O, multiply As by 2 and H₂O by 3.

 $As_2O_3 + SnCl_2 + HCl \rightarrow SnCl_4 + 2As + 3H_2O$

Step 3: To equalise H atoms multiply HCl by 6.

 $As_2O_3 + SnCl_2 + 6HCl \rightarrow SnCl_4 + 2As + 3H_2O$

Step 4: Multiply $SnCl_2$ and $SnCl_4$ both by 3. $As_2O_3 + 3SnCl_2 + 6HCl \rightarrow 3SnCl_4 + 2As + 3H_2O$

This is te balanced chemical equation.

Example 3: Balance the following skeletal equation: Fe + $H_2O \rightarrow Fe_2O_3 + H_2$ Step 1: Count the number of atoms of a

Step 1: Count the number of atoms of all the elements on both sides of the chemical equation.

Reactant side	Product side
1 atom	2 atoms
2 atoms	2 atoms
1 atom	3 atoms
	1 atom 2 atoms

Step 2: To balance Fe atoms, multiply Fe on the LHS by 2.

$$2\text{Fe} + \text{H}_2\text{O} \rightarrow \text{Fe}_2\text{O}_3 + \text{H}_2$$

Step 3: To balance oxygen atoms on the RHS, write 3 before H_2O on the reactant side.

$$2\text{Fe} + 3\text{H}_2\text{O} \rightarrow \text{Fe}_2\text{O}_3 + \text{H}_2$$

Step 4: Now there are 6 hydrogen atoms on the reactant side and only 2 hydrogen atoms on the product side. To balance the hydrogen atoms, write 3 before hydrogen on the product side.

$$2Fe + 3H_2O \rightarrow Fe_2O_3 + 3H_2$$

The above equation is a balanced equation

Example 4: Ammonia is prepared by heating a mixture of ammonium chloride and calcium hydroxide. Write a balanced equation of the reaction.

Solution:

- (i) NH₄Cl + Ca(OH)₂ → CaCl₂ + NH₃ + H₂O
 This is the skeleton equation.
- (ii) To equalise Cl atoms multiply NH_4Cl by 2 $2NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + NH_3 + H_2O$
- (iii) To equalise nitrogen atoms multiply NH₃ by 2
 2NH₄Cl + Ca(OH)₂ → CaCl₂ + 2NH₃ + 2H₂O
- (iv) To equalise oxygen atoms multiply H₂O by 2
 2H₄Cl + Ca(OH)₂ → CaCl₂ + 2NH₃ + 2H₂O
 The above equation is a balanced equation.

Example 5: Potassium dichromate reacts with hydrochloric acid to produce potassium chloride, chromium chloride, water and chlorine.

Write the skeletal equation of the reaction and balance it.

Step 1: The skeletal equation is

$$K_2Cr_2O_7 + HCl \rightarrow KCl + CrCl_3 + H_2O + Cl_2$$

Step 2: Balance oxygen, hydrogen, potassium, chromium and chlorine, starting with *oxygen* because

- To equalize oxygen, multiply H₂O by 7;
 K₂Cr₂O₇ + HCl → KCl + CrCl₃ + 7H₂O + Cl₂
- To equalize hydrogen, multiply HCl by 14;
 K₂Cr₂O₇ + 14HCl → KCl + CrCl₃ + 7H₂O + Cl₂
- To equalize K and Cr, multiply both KCl and CrCl₃ by 2;

$$K_2Cr_2O_7 + 14 HCl \rightarrow 2KCl + 2CrCl_3 + 7H_2O + Cl_2$$

To equalize Cl, multiply it by 3, i.e. 3Cl₂
 K₂Cr₂O₇ + 14 HCl → 2KCl + 2 CrCl₃ + 7 H₂O + 3 Cl₂
 Now the equation is balanced.

Note: A balanced equation need not represent the real reaction.

For example: $Cu + H_2SO_4 \rightarrow CuSO_4 + H_2$ is a balanced reaction, but experiments show that copper reacts with conc. H_2SO_4 to give SO_2 and not hydrogen.

The correct chemical equation is:

$$\text{Cu} + 2\text{H}_2\text{SO}_4 \rightarrow \text{CuSO}_4 + \text{SO}_2 + 2\text{H}_2\text{O}.$$

The **hit and trial method** is very useful for balancing simple chemical equations, but it has some limitations.

- (i) It takes time to balance complicated equations.
- (ii) The mechanism (steps of the reaction *i.e.* how the reaction has taken place) of the reaction is not clear.

Balancing can be done more easily by supposing the complex reaction to take place in steps.

Write the equations for these individual steps and then add the equations. This method is known as balancing by partial equation method*.

The following examples will make it more clear.

Example 6: Liberation of iodine from potassium iodide by reacting it with hydrogen peroxide is supposed to be completed in the following two steps:

(i) H₂O₂ decomposes to give water + nascent oxygen

$$H_2O_2 \rightarrow H_2O + O$$
(i)

(ii) Nascent oxygen so produced oxidizes potassium iodide in the presence of water to give iodine and potassium hydroxide. H₂O and O occur on the product side, in the first reaction, while on the reactant side in the second reaction, so they get cancelled. The resultant equation is a balanced chemical equation.

1.9.3 Information conveyed by a balanced chemical equation

Refer to the following equations:

(1)
$$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$$

The above equation tells us:

- (a) about the actual result of the chemical change.
- (b) about the reactants involved and the products formed as a result of the reaction.
- (c) about the number of molecules of each substance taking part and formed in the reaction. Here two molecules of sodium hydroxide and one molecule of sulphuric acid react to give one molecule of sodium sulphate and two molecules of water.
- (d) about the chemical composition of the respective molecules; one molecule of sodium hydroxide (NaOH) contains one atom of sodium, one atom of oxygen and one atom of hydrogen.
- (e) About molecular mass; that 80 parts by weight of sodium hydroxide reacts with 98 parts by weight of sulphuric acid to produce 142 parts by weight of sodium sulphate and 36 parts by weight of water.

$$2\text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$$

 $2(23+16+1) + (2+32+64) = (46+32+64) + 2(2+16)$
 $\Rightarrow 80 + 98 = 142 + 36$
 $\Rightarrow 178 = 178$

(f) It also proves the law of conservation of mass, i.e. the total mass of the substances on either side of the equation is the same. According to the above equation, 178 gram of reactants are producing 178 gram of products.

Adding the two equations (i) and (ii) we get $H_2O_2 \rightarrow H_2O + O$ $2KI + H_2O + O \rightarrow 2KOH + I_2$ $2KI + H_2O_2 \rightarrow 2KOH + I_2$

^{*} Not in syllabus

Note: On the basis of experimentas it is found that 22.4 litres of every gas, at 760 mm pressure and temperature of 0°C (STP), weighs the same as its molar mass *i.e.* molecular mass expressed in grams.

For example:

22.4 litres of hydrogen at S.T.P. will weigh 2 g. 22.4 litres of ammonia at S.T.P. will weigh 17 g, and so on.

(2)
$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$$

 $100 73 111 18 44$

This balanced chemical equation conveys the following information :

- (a) One molecule of calcium carbonate reacts with two molecules of hydrochloric acid to produce one molecule each of calcium chloride, water and carbon dioxide.
- (b) 100 g of calcium carbonate reacts with 73 g of hydrochloric acid to produce 111 g of calcium chloride, 18 g of water and 44 g of carbon dioxide.

(Note that the masses of the reactants and the products are taken in grams)

(c) 100 g of calcium carbonate, on treatment with 73 g of HCl, will produce 22.4 litres of carbon dioxide at S.T.P.

1.9.4 Limitations of a chemical equation

A chemical equation does not tell us:

- (a) the physical state of the reactants and the products, *i.e.* whether the substances are solid, liquid or gas.
- (b) the time taken for the completion of the reaction.
- (c) whether heat is given out or absorbed during the reaction.
- (d) the respective concentrations of the reactants and the products.
- (e) the rate at which the reaction proceeds.

- (g) whether the reaction is completed or it is not
 - (g) whether the reaction is completed or it is not completed.
 - 1.9.5 A chemical equation can be made more informative by writing the following additional information to it.
 - (a) Information regarding temperature, pressure, catalyst, etc. is provided above and or below the arrow (→) separating reactants and products.

For example: Nitrogen reacts with hydrogen in the presence of catalyst Fe and promoter Mo at 450°C and 200 to 900 atmospheric pressure, to produce ammonia.

$$N_2 + 3H_2 \xrightarrow{\text{Fe + Mo}} 2NH_3$$

200 - 900 atm

(b) Physical states of reactants and products can be provided by using the letters (s) for solid, (l) for liquid, (g) for gas and (aq) for solution in water.

For example: Zinc, a solid metal, reacts with hydrochloric acid in aqueous state to produce zinc chloride in aqueous state and a gas hydrogen.

$$Zn(s) + HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

(c) Chemical reactions proceed with evolution or absorption of heat. This information is provided by adding a heat term.

For example:

$$C(s) + O_2(g) \rightarrow CO_2(g) + Heat$$

 $2C(s) + O_2(g) \rightarrow 2CO(g) - Heat$

(d) Concentration of acids can also be added to the reaction.

For example: Magnesium reacts with dilute sulphuric acid to produce magnesium sulphate and hydrogen.

$$Mg(s) + H_2SO_4(dil) \rightarrow MgSO_4(aq) + H_2(g)$$

EXCERCISE 1(B)

- 1. Balance the following equations:
 - (a) Fe + $H_2O \rightarrow Fe_3O_4 + H_2$
 - (b) $Ca + N_2 \rightarrow Ca_3N_2$

- (c) $Zn + KOH \rightarrow K_2ZnO_2 + H_2$
- (d) $\text{Fe}_2\text{O}_3 + \text{CO} \rightarrow \text{Fe} + \text{CO}_2$
- (e) $PbO + NH_3 \rightarrow Pb + H_2O + N_2$

(g) $PbS + O_2 \rightarrow PbO + SO_2$

(h) $S + H_2SO_4 \rightarrow SO_2 + H_2O$

(i) $S + HNO_3 \rightarrow H_2SO_4 + NO_2 + H_2O_3$

(j) $MnO_2 + HCl \rightarrow MnCl_2 + H_2O + Cl_3$

(k) $C + H_2SO_4 \rightarrow CO_2 + H_2O + SO_3$

(1) $KOH + Cl_2 \rightarrow KCl + KClO + H_2O$

(n) $Pb_3O_4 + HCl \rightarrow PbCl_2 + H_2O + Cl_2$

(o) $H_2O + Cl_2 \rightarrow HCl + O_2$

(p) $NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$

(q) $HNO_3 + H_2S \rightarrow NO_2 + H_2O + S$

(r) $P + HNO_3 \rightarrow NO_2 + H_2O + H_3PO_4$

1.10 RELATIVE ATOMIC MASS (ATOMIC WEIGHT)

Atoms being extremely small, cannot be seen or weighed directly. But indirect methods of physics have enabled us to know the absolute mass of nearly all kinds of atoms. The mass of a hydrogen atom is found to be 1.66×10^{-24} g while that of carbon atom is 1.9926×10^{-23} g. As these masses are too small, it is not convenient to use kilograms or grams as unit. It has, therefore, been considered appropriate to use the mass of some standard atom as a unit and then relate masses of other atoms to it. The resulting masses of atoms are thus known as **Relative Atomic Mass** (RAM) or **Atomic Weight**.

In the beginning, the mass of the hydrogen atom (hydrogen element being the lightest) was chosen as a unit and masses of other atoms were compared with it. In 1961, carbon-12 was finally selected, because its adoption least affected the values of the atomic mass of the various elements on the old standard.

The relative atomic mass or atomic weight of an element is the number of times one atom of the element is heavier than $\frac{1}{12}$ times of the mass of an atom of carbon-12. Thus:

Relative atomic mass = $\frac{Mass of \ 1 \ atomof \ the \ element}{\frac{1}{12} th \ the \ mass \ of \ one \ C-12 \ atom}$

Atomic mass is expressed in atomic mass units [a.m.u.]. Atomic mass unit is defined as 1/12 the mass of carbon atom C-12. (The mass of an atom of carbon-12 isotope was given the atomic mass of 12 units, *i.e.* 12 amu or simply 12 u).

Thus, the mass of a hydrogen atom is 1 amu, and those of oxygen and helium are 16 amu and

4 amu respectively (Atomic masses of elements are given in the preliminary pages of this book).

Note: Experimentally it is found that one atom of C^{12} (carbon having atomic mass 12) atom has a mass of 1.9926×10^{-23} grams. On dividing this mass by 12, atomic mass unit (amu or U) is obtained. It is equal to 1.6605×10^{-24} gram. Thus,

1 amu or 1 U = 1.6605×10^{-24} g

1.11 RELATIVE MOLECULAR MASS (MOLECULAR WEIGHT)

The relative molecular mass (or molecular weight) of an element or a compound is the number that represents how many times one molecule of the substance is heavier than 1/12 of the mass of an atom of carbon-12.

The Relative Molecular Mass (RMM) is obtained by adding together the relative atomic masses (atomic weights) of all the various atoms present in a molecule.

For example, relative molecular mass of sulphuric acid (H_2SO_4) is calculated as:

One molecule of sulphuric acid has two atoms of hydrogen, one atom of sulphur and four atoms of oxygen.

Mass of 2 atoms of hydrogen is $1 \times 2 = 2$ amu Mass of 1 atom of sulphur is 32 amu

Mass of 4 atoms of oxygen is $16 \times 4 = 64$ amu

So mass of H_2SO_4 is $2 \times 1 + 32 + 16 \times 4 = 98$ amu Thus the molecular mass of a substance is the

Thus the molecular mass of a substance is the sum of the atomic masses of the constituent atoms present in one molecule of that substance.

Example 7: Calculate the relative molecular masses (or molecular weights) of the following compounds:

(a)	copper suipliate crystais, cuso ₄ . 311 ₂ 0		Liement	No of atoms	Atomic mass	Iotai	
(b)	Ammonium sulphate, (NH ₄) ₂ SO ₄		N	2	14	28	
(c)	Cane sugar, C ₁₂ H ₂₂ O ₁₁		C	1	12	12	
	Given that the relative atomic masses of Cu =	63.5.	Н	4	1	4	
S =	32, $O = 16$, $N = 14$ and $C = 12$		O	1	16	16	
Solu	ution:					60	
(a)	The relative molecular mass of CuSO ₄ ·5H ₂ O		∴ R.A.	M. = 60		- 	
	$= 63.5 + 32 + (16 \times 4) + 5(2 + 16)$ $= 159.5 + 90 = 249.5$	Ans.	Percenta	ge of nitrogen =	Wt. of nitrogen Total wt. of ure	$\frac{1}{a} \times 100$	
(b)	The relative molecular mass of $(NH_4)_2SO_4$ = $N_2H_8SO_4$			× 100 = 46.66			
	$= 14 \times 2 + 1 \times 8 + 32 + 16 \times 4$ $= 28 + 8 + 32 + 64 = 132$	Ans.		ole 10 : Cald of various elem	culate the per ments in :	rcentage	
(c)	The relative molecular mass of C ₁₂ H ₂₂ O ₁₁		Sodium	carbonate, Na	$_{2}CO_{3}$		
	$= 12 \times 12 + 1 \times 22 + 16 \times 11$				tive atomic m	asses of	
	= 144 + 22 + 176 = 342	Ans.	O = 16, Na = 16	= 23 and $C = 12$	2.		
1.12	PERCENTAGE COMPOSITION		Solution:				
Percentage composition of a compound, is the			Relative molecular mass of Na ₂ CO ₃				
pera	centage by weight of each element present is	n it.		$3 \times 2 + 12 + 16$			
	Percentage of an element in a compound		= 4	6 + 12 + 48 = 1	106		
_	Total wt. of the element in one molecule $\times 10^{-1}$	0	Since 10	06 g of Na ₂ CO ₃	contains 46 g of	sodium,	
	Gram molecular weight of the compound		∴100 g	of Na ₂ CO ₃ con	tains $\frac{46 \times 100}{106}$ of	of sodium	
in v	Example 8 : Calculate percentage of hydrovater.		1,515	43.4 g of Sodi			
0 =	Given that the relative atomic masses of H	Similarly	y, 106 g Na ₂ CO ₃	contains 12 g of	carbon.		
	ution:		∴ 100	,,	$\frac{12\times10}{106}$		
	Relative molecular mass of H ₂ O		1200	11.2 6.0			
	$=1\times2+16$		$= \frac{106}{106}$	= 11.3 g of C	arbon		
	= 18	Again, 1	06 g of Na ₂ CO ₃	contains 48 g of	f oxygen.		
	Since 18 g of water contains 2 g of hydrogen		.: 100	,,	,, 48×1		
	\therefore 100 g of water contains $\frac{2}{18} \times 100 = 11.11$	g of			106		
Hvd	rogen 18	9	$=\frac{4800}{106}$	$\frac{0}{1} = 45.3 \text{ g of O}$	xygen		
	Answer: Hydrogen in water is 11.1%		100	n Na ₂ CO ₃ : Na			

Example 11: Find the percentage mass of water Given: R.A.M. of N = 14, C = 12, O = 16, H = 1in washing soda crystals Na₂CO₃· 10H₂O.

Solution:

Example 9: Calculate the percentage of

Relative molecular mass of urea NH2CONH2 is

wogen in urea NH2CONH2.

Solution:

Relative molecular mass of Na,CO₃. 10H₂O

C = 11.3% and O = 45.3%

$$= 106 + 180 = 286$$

286 g of washing soda contains 180 g of water of crystallisation.

∴ 100 " "
$$\frac{180 \times 100}{286}$$

= $\frac{18000}{286}$ = 62.9 g of H₂O

Answer: The % of H_2O in $Na_2CO_3 \cdot 10H_2O = 62.9$

1.13 EMPIRICAL FORMULA OF A COMPOUND

The empirical formula of a compound is the simplest formula, which gives the simplest ratio in whole numbers of atoms of different elements present in one molecule of the compound. peroxide (H_2O_2) is HO. It indicates the simplest ratio (1:1) between the hydrogen and oxygen atoms in its molecule whereas its actual formula is H_2O_2 .

Similarly, the empirical formula of glucose $(C_6H_{12}O_6)$ is CH_2O . It indicates that the ratio of C, H and O atoms in a molecule of glucose is 1:2:1.

The empirical formula mass is the sum of atomic masses of various elements present in the empirical formula.

Thus, for hydrogen peroxide (H_2O_2) , the empirical formula is HO and its empirical formula mass is 1 + 16 = 17.

CHAPTER AT A GLANCE

- Symbol is the short form that stands for the atom of a specific element.
- Valency is the combining capacity of an atom or a radical. It is equal to the number of electron(s)
 lost/gained or shared while combining with another atom or radical. Some elements, like iron, mercury,
 lead, show variable valencies.
- Radical is an atom or a group of atoms of the same or different elements, that behave as a single unit and has positive or negative charge. A radical with positive charge is a cation, e.g. NH₄⁺ (ammonium ion), Na⁺ (sodium ion) and a radical with negative charge is an anion, e.g. Cl⁻ (chloride), CO₃⁻² (carbonate).
- Molecular formula is a shorthand notation for the molecule of a substance in terms of symbols and numbers of atoms of each element present in it.
- Atomic mass unit (amu) is equal to one twelfth the mass of an atom of carbon-12 (atomic mass of carbon taken as 12).
- Molecular mass or relative molecular mass of a substance is the relative mass of its molecule as compared with the mass of a carbon -12 atom, taken as 12 units.
- Chemical equation is the symbolic representation of a chemical reaction using symbols and formulae
 of the substances involved in the reaction. Since matter is neither created nor destroyed in the course
 of a chemical reaction, so every equation needs to be balanced.
- Balanced chemical equation tells us (i) which substances take part is a chemical reaction (reactants)
 and which substances are formed (products) and (ii) the number of molecules of each substance
 involved.
- The relative atomic mass or atomic weight of an element is the number of times one atom of the element is heavier than $\frac{1}{12}$ times of the mass of an atom of carbon-12.
- The relative molecular mass (or molecular weight) of an element or a compound is the number that represents how many times one molecule of the substance is heavier than 1/12 of the mass of an atom of carbon-12.
- The empirical formula of a compound is the simplest formula, which gives the simplest ratio in whole numbers of atoms of different elements present in one molecule of the compound.

1 .. 0

EXCERCISE I(C)

- 1	172111		.1	1 1	10000	
- 1	HIII	ın	The	n	ank	c .

- (a) Dalton used symbol for oxygen for hydrogen.
- (b) Symbol represents atoms(s) of an element.
- (c) Symbolic expression for a molecule is called
- (d) Sodium chloride has two radicals. Sodium is a radical while chloride is a radical.
- (e) Valency of carbon in CH_4 is, in C_2H_6 , in C_2H_4 and in C_2H_2 is
- (f) Valency of Iron in FeCl₂ is and in FeCl₃ it is
- (g) Formula of iron (III) carbonate is

Complete the following table.

Acid Radicals → Basic Radicals ↓	Chloride	Nitrate	Sulphate	Carbonate	Hydroxide	Phosphate
Magnesium	MgCl ₂	Mg(NO ₃) ₂	MgSO ₄	MgCO ₃	Mg(OH) ₂	Mg ₃ (PO ₄) ₂
Sodium					E.ZIE	
Zinc						
Silver						
Ammonium						
Calcium						
Iron (II)						
Potassium						

- Sodium chloride reacts with silver nitrate to produce silver chloride and sodium nitrate
 - (a) Write the equation.
 - (b) Check whether it is balanced, if not balance it.
 - (c) Find the weights of reactants and products.
 - (d) State the law which this equation satisfies.
- 4. What information does the following chemical equations convey?
 - (a) $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$
 - (b) $Mg + 2HCl \rightarrow MgCl_1 + H_2$
- 5. (a) What are poly-atomic ions? Give two examples.
 - (b) Name the fundamental law that is involved in every equation.
- 6. What is the valency of:
 - (a) fluorine in CaF₂
- (b) sulphur in SF₆
- (c) phosphorus in PH₃
- (d) carbon in CH₄
- (e) nitrogen in the following compounds:
- (i) N_2O_3 (ii) N_2O_5
- (iii) NO₂
- Why should an equation be balanced? Explain with the help of a simple equation.
- Write the balanced chemical equations of the following reactions.
 - (a) Sodium hydroxide + sulphuric acid → sodium sulphate + water
 - (b) Potassium bicarbonate + sulphuric acid → potassium sulphate + carbon dioxide + water
 - (c) Iron + sulphuric acid → ferrous sulphate + hydrogen.

(f) Cop	oper + nitric acid →	coppe	er nitrate + nitric oxide + water				
(g) Am	monia + oxygen → r	nitric (oxide + water				
(h)	Barium chloride + sulphuric acid → barium sulphate + hydrochloric acid							
(i)) Zin	Zinc sulphide + oxygen → zinc oxide + sulphur dioxide						
(j) Alu	minium carbide + wa	ter –	aluminium hydroxide + methane				
(k)) Iron	pyrites (FeS ₂) + oxy	gen -	→ ferric oxide + sulphur dioxide				
		-		frochloric acid → potassium chloride + manganese chloride + chlorine + water				
(m)) Alu	minium sulphate + so	dium	hydroxide → sodium sulphate + sodium meta aluminate + water.				
(n)) Alu	minium + sodium hyo	droxid	le + water → sodium meta aluminate + hydrogen				
(o)	Pot	assium dichromate + s	sulphu	ric acid → potassium sulphate + chromium sulphate + water + oxygen.				
(p)	Pot	assium dichromate + l	hydro	chloric acid → potassium chloride + chromium chloride + water + chlorine.				
1500				ric acid + nitrogen dioxide + water.				
1			- 7	dioxide + sulphuric acid → sodium hydrogen sulphate + manganese sulphate + water + chlorine.				
9. (a)) Def	ine atomic mass unit.						
(b)) Cal	culate the molecular r	nass o	of the following:				
	(i)	CuSO ₄ ·5H ₂ O	(ii)	$(NH_4)_2CO_3$				
	(iii)	(NH ₂) ₂ CO	(iv)	Mg_3N_2				
C	iven	atomic mass of Cu =	63.5,	H = 1, $O = 16$, $C = 12$, $N = 14$, $Mg = 24$, $S = 32$				
0. C	hoos	e the correct answer f	rom t	ne options given below.				
(a)) Mo	dern atomic symbols	are ba	sed on the method proposed by				
	(i)	Bohr	(ii)	Dalton				
	(iii)	Berzelius	(iv)	Alchemist				
(b)	The	number of carbon ato	oms ii	a hydrogen carbonate radical is				
	(i)	one	(ii)	two				
	187211175	three		four				
(c)		formula of iron (III)						
		Fe ₃ SO ₄		Fe(SO ₄) ₃				
		$Fe_2(SO_4)_3$						
(d)		vater, the hydrogen-to						
		1:8		1:16				
	(iii)	1:32	(iv)	1:64				
(e)	The	formula of sodium ca	arbon	ate is Na ₂ CO ₃ and that of calcium hydrogen carbonate is				
	(i)	CaHCO ₃						
	(ii)	Ca(HCO ₃) ₂						
		Ca ₂ HCO ₃						
	(iv)	Ca(HCO ₃) ₃						
1. C	orrec	t the following statem	ents					
(a)	An	nolecular formula repr	esent	s an element.				
(b)	Mol	lecular formula of wat	ter (H	₂ O) represents 9 parts by mass of water.				

(e) Silver nitrate \rightarrow silver + nitrogen dioxide + oxygen

- (d) A molecule of an element is always monoatomic.
- (e) CO and Co both represent cobalt.
- 12. Calculate the relative molecular masses of :

[For atomic masses, refer page no (v)]

- (a) CHCl₃
- (b) (NH₄)₂ Cr₂O₇
- (c) CuSO₄ · 5H₂O
- (d) (NH₄)₂SO₄
- (e) CH₃ COONa
- (f) Potassium chlorate
- (g) Ammonium chloroplatinate (NH₄)₂ PtCl₆
- 13. Give the empirical formula of:
 - (a) Benzene (C₆H₆)
- (b) Glucose (C₆H₁₂O₆)
- (c) Acetylene (C₂H₂)
- (d) Acetic acid (CH₃COOH)
- 14. Find the percentage mass of water in the Epsom salt MgSO₄·7H₂O.
- 15. Calculate the percentage of phosphorus in :
 - (a) Calcium hydrogen phosphate Ca(H2PO4)2
 - (b) Calcium phosphate Ca₃(PO₄)₂
- 16. Calculate the percentage composition of each element in Potassium chlorate, KClO₃.
- 17. Urea is a very important nitrogenous fertilizer. Its formula is CON_2H_4 . Calculate the percentage of carbon in urea. (C = 12, O = 16, N = 14 and H = 1)

ANSWERS

- 12. (a) 119.5 (b) 252 (c) 249.5 (d) 132 (e) 82 (f) 122.5 (g) 444
- 15. (a) 26.5% (b) 20% 16. K = 31.83%, Cl = 28.98%, O = 39.18% 17. 20%