FRACTION

[INCLUDING PROBLEMS BASED ON FRACTIONS]

4.1 BASIC CONCEPT

If an apple is divided into five equal parts; each part is said to be one-fifth $\left(\frac{1}{5}\right)$ of the whole apple. And, if out of these five equal parts, 2 parts are eaten; we say two-fifth $\left(\frac{2}{5}\right)$ of the apple is eaten or three-fifth $\left(\frac{3}{5}\right)$ of the apple is left.

The numbers $\frac{1}{5}$, $\frac{2}{5}$ and $\frac{3}{5}$ used in the statement, given above, are called **fractions**. Each of these fractions indicates a part of the whole.

In fraction $\frac{a}{b}$, **a** is called the **numerator** and **b** is called the **denominator** of the fraction.

Every fraction can be expressed as $\frac{a}{b}$, where a and b are integers and $b \neq 0$ i.e. denominator is not equal to zero.

4.2 CLASSIFICATION OF FRACTIONS

Types of fractions	Condition	Examples
1. Decimal fraction	denominator is 10 or higher power of 10.	1 3 15 8 10° 100° 10° 10° 10° 10° 10° 10° 10° 10
2. Vulgar fraction	denominator is other than 10, 100, 1000, etc.	$\frac{2}{5}$, $\frac{4}{7}$, $\frac{8}{19}$, $\frac{23}{107}$,
3. Proper fraction	denominator is greater than its numerator.	4 3 101 5 7 235
4. Improper fraction	denominator is less than its numerator.	7/5, 18/60,
5. Mixed fraction	consists of an integer and a proper fraction.	$2\frac{5}{7}$, $1\frac{3}{5}$, $10\frac{1}{9}$,

If the numerator is equal to the denominator, the fraction is equal to unity (one).

e.g.
$$\frac{4}{4} = 1$$
, $\frac{-3}{-3} = 1$, $\frac{49}{49} = 1$ and so on.

Important: (a) $\frac{7}{20} = \frac{7 \times 5}{20 \times 5} = \frac{35}{100}$, a decimal fraction.

(b)
$$\frac{81}{500} = \frac{81 \times 2}{500 \times 2} = \frac{162}{1000}$$
, a decimal fraction.

.. If the denominator of a fraction can be expressed as 10 or as some higher power of 10, it is a decimal fraction.

Example 1:

- (a) Convert: (i) $3\frac{2}{7}$ (ii) $2\frac{5}{8}$ into improper fractions.
- (b) Convert: (i) $\frac{11}{4}$ (ii) $\frac{19}{5}$ into mixed fractions.

Solution:

(a) (i)
$$3\frac{2}{7} = \frac{3\times 7 + 2}{7} = \frac{23}{7}$$
 (Ans.)

Given mixed fraction = Integral part × Denominator + Numerator Denominator

(ii)
$$2\frac{5}{8} = \frac{2 \times 8 + 5}{8} = \frac{16 + 5}{8} = \frac{21}{8}$$
 (Ans.)

(b) (i)
$$\frac{11}{4} = \frac{2 \times 4 + 3}{4}$$
 \therefore $4\sqrt{11}\sqrt{2}$ $= 2 + \frac{3}{4} = 2\frac{3}{4}$ (Ans.)

(ii)
$$\frac{19}{5} = \frac{3 \times 5 + 4}{5}$$
 \therefore $5 \int 19 \sqrt{3}$ $\frac{15}{4}$ (Ans.)

1. The value of a fraction remains the same if both its numerator and denominator are (i) multiplied or (ii) divided by the same non-zero number.

e.g. (i)
$$\frac{5}{8} = \frac{5 \times 2}{8 \times 2} = \frac{10}{16}$$
; $\frac{3}{7} = \frac{3 \times 5}{7 \times 5} = \frac{15}{35}$ and so on.
(ii) $\frac{10}{16} = \frac{10 \div 2}{16 \div 2} = \frac{5}{8}$; $\frac{15}{35} = \frac{15 \div 5}{35 \div 5} = \frac{3}{7}$ and so on.

2. A fraction must always be expressed in its lowest term.

REDUCING A GIVEN FRACTION TO ITS LOWEST TERM

First of all find H.C.F. of both the terms (numerator and denominator) of the given fraction. Then divide each term by this H.C.F.

Example 2:

Reduce : (i) $\frac{48}{60}$ (ii) $\frac{18}{27}$ to their lowest terms.

Solution:

(i) Since, H.C.F. of terms 48 and 60 = 12.

$$\therefore \frac{48}{60} = \frac{48 \div 12}{60 \div 12}$$
 [Dividing each term by 12]
$$= \frac{4}{5}$$
 (Ans.)

$$\therefore \frac{18}{27} = \frac{18 \div 9}{27 \div 9} = \frac{2}{3}$$

(Ans.)

Alternative Method :

Resolve both the numerator and the denominator into prime factors, then cancel out the common factors among both.

$$48 = 2 \times 2 \times 2 \times 2 \times 3$$

and
$$60 = 2 \times 2 \times 3 \times 5$$

$$\frac{48}{60} = \frac{\cancel{2} \times \cancel{2} \times 2 \times 2 \times \cancel{3}}{\cancel{2} \times \cancel{2} \times \cancel{3} \times 5}$$

[Cancelling out the common factors]

$$= \frac{2\times 2}{5} = \frac{4}{5}$$

(Ans.)

EQUIVALENT (EQUAL) FRACTIONS 4.4

Fractions having the same value are called equivalent fractions.

e.g., Since,
$$\frac{20}{25} = \frac{20 \div 5}{25 \div 5} = \frac{4}{5}$$
 and $\frac{28}{35} = \frac{28 \div 7}{35 \div 7} = \frac{4}{5}$

$$\therefore$$
 Fractions $\frac{20}{25}$ and $\frac{28}{35}$ are equivalent, *i.e.*, $\frac{20}{25} = \frac{28}{35} = \frac{4}{5}$.

4.5 SIMPLE AND COMPLEX FRACTIONS

A fraction, whose numerator and denominator both are integers, is called a simple fraction; whereas a fraction, whose numerator or denominator or both are not integers, is called a complex fraction.

- e.g. (i) Each of $\frac{3}{8}$, $\frac{-10}{17}$, $\frac{8}{-15}$, etc., is a simple fraction.
 - (ii) Each of $\frac{5}{2/3}$, $\frac{1.4}{8}$, $\frac{9/14}{2^3}$, etc., is a complex fraction.

EXERCISE 4(A)

- Classify, each fraction given below, as decimal or vulgar fraction, proper or improper fraction and mixed fraction:

- (ii) $\frac{11}{10}$ (iii) $\frac{13}{20}$ (iv) $\frac{18}{7}$ (v) $3\frac{2}{9}$
- Express the following improper fractions as mixed fractions:
- (ii) $\frac{7}{4}$ (iii) $\frac{25}{6}$
- (iv) $\frac{38}{5}$
- Express the following mixed fractions as improper fractions:

- (ii) $7\frac{5}{13}$ (iii) $3\frac{1}{4}$ (iv) $2\frac{5}{48}$ (v) $12\frac{7}{11}$
- 4. Reduce the given fractions to lowest terms :
- (ii) $\frac{27}{36}$
- (iii) $\frac{18}{42}$
- (iv) $\frac{35}{75}$

- State true or false:
 - (i) $\frac{30}{40}$ and $\frac{12}{16}$ are equivalent fractions.
 - (ii) $\frac{10}{25}$ and $\frac{25}{10}$ are equivalent fractions.
 - (iii) $\frac{35}{49}$, $\frac{20}{28}$, $\frac{45}{63}$ and $\frac{100}{140}$ are equivalent fractions.
- Distinguish each of the following fractions, given below, as a simple fraction or a complex fraction:

- (i) $\frac{0}{8}$ (ii) $\frac{-3}{-8}$ (iii) $\frac{5}{-7}$ (iv) $\frac{3\frac{3}{5}}{18}$

- (v) $\frac{-6}{2\frac{2}{5}}$ (vi) $\frac{3\frac{1}{3}}{7\frac{2}{5}}$ (vii) $\frac{-5\frac{2}{9}}{5}$ (viii) $\frac{-8}{0}$

Remember: Each of the numbers of the form $\frac{5}{0}$, $\frac{-7}{0}$, $\frac{8}{0}$, etc., is neither a simple fraction nor a complex fraction; as the division by '0' is not defined.

LIKE AND UNLIKE FRACTIONS 4.6

Fractions having the same denominators are called like fractions; whereas the fractions with different denominators are called unlike fractions.

- (i) $\frac{3}{8}$, $\frac{5}{8}$, $\frac{9}{8}$, etc., are like fractions.
 - (ii) $\frac{2}{7}$, $\frac{5}{9}$, $\frac{15}{23}$, $\frac{24}{37}$, etc., are unlike fractions.

CONVERTING UNLIKE FRACTIONS INTO LIKE FRACTIONS

Steps: 1. Find the L.C.M of the denominators of all given fractions.

- 2. For each given fraction, multiply its denominator by a suitable number so that the product obtained is equal to the L.C.M. obtained in Step 1.
- 3. Multiply the numerator also by the same number.

37

Example 3:

Change $\frac{3}{4}$, $\frac{3}{5}$, $\frac{7}{8}$ and $\frac{9}{16}$ to like fractions.

Solution:

Since, L.C.M. of the denominators 4, 5, 8 and 16 is 80.

$$\therefore \quad \frac{3}{4} = \frac{3 \times 20}{4 \times 20} = \frac{60}{80}; \qquad \frac{3}{5} = \frac{3 \times 16}{5 \times 16} = \frac{48}{80}$$

$$\frac{7}{8} = \frac{7 \times 10}{8 \times 10} = \frac{70}{80}; \qquad \frac{9}{16} = \frac{9 \times 5}{16 \times 5} = \frac{45}{80}$$

.. Required like fractions are : $\frac{60}{80}$, $\frac{48}{80}$, $\frac{70}{80}$ and $\frac{45}{80}$ (Ans.)

4.8 COMPARING FRACTIONS

Steps: Convert all the given fractions into like fractions, then the fraction with the greater numerator is greater.

Example 4:

Compare the fractions : $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{12}$ and $\frac{9}{16}$.

Solution:

.. L.C.M. of the denominators 3, 4, 12 and 16 = 48.

$$\frac{2}{3} = \frac{2 \times 16}{3 \times 16} = \frac{32}{48}$$
;
$$\frac{3}{4} = \frac{3 \times 12}{4 \times 12} = \frac{36}{48}$$
 Converting into like fractions
$$\frac{5}{12} = \frac{5 \times 4}{12 \times 4} = \frac{20}{48}$$
 and
$$\frac{9}{16} = \frac{9 \times 3}{16 \times 3} = \frac{27}{48}$$

Since, the biggest numerator is 36, thus the biggest fraction is $\frac{36}{48}$ (i.e., $\frac{3}{4}$).

Next one is
$$\frac{32}{48}$$
 (i.e., $\frac{2}{3}$) and the smallest fraction is $\frac{20}{48}$ (i.e., $\frac{5}{12}$)

.. Fractions in ascending order of values are :
$$\frac{5}{12}$$
, $\frac{9}{16}$, $\frac{2}{3}$ and $\frac{3}{4}$. (Ans.)

i.e. $\frac{5}{12} < \frac{9}{16} < \frac{2}{3} < \frac{3}{4}$

And, fractions in descending order of values are :
$$\frac{3}{4}$$
, $\frac{2}{3}$, $\frac{9}{16}$ and $\frac{5}{12}$. (Ans.)

i.e. $\frac{3}{4} > \frac{2}{3} > \frac{9}{16} > \frac{5}{12}$

Ascending means smaller to greater and descending means greater to smaller.

Alternate Method (By making numerators equal):

Steps: 1. Convert all the given fractions into fractions of equal numerators.

2. The fraction which has a smaller denominator is greater.

Example 5:

Compare: $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{12}$ and $\frac{9}{16}$ by making their numerators equal.

Solution :

Step 1: Since, L.C.M. of numerators 2, 3, 5 and 9 is 90

$$\therefore \frac{2}{3} = \frac{2 \times 45}{3 \times 45} = \frac{90}{135} \qquad ; \qquad \frac{3}{4} = \frac{3 \times 30}{4 \times 30} = \frac{90}{120}$$

$$\frac{5}{12} = \frac{5 \times 18}{12 \times 18} = \frac{90}{216} \qquad \text{and} \qquad \frac{9}{16} = \frac{9 \times 10}{16 \times 10} = \frac{90}{160}$$

Step 2: Since, $\frac{90}{120}$ has the smallest denominator, the biggest fraction is $\frac{90}{120}$ (i.e., $\frac{3}{4}$).

As, $\frac{90}{216}$ has the biggest denominator, the smallest fraction is $\frac{90}{216}$ (i.e., $\frac{5}{12}$).

.. Fractions in ascending order are : $\frac{5}{12}$, $\frac{9}{16}$, $\frac{2}{3}$ and $\frac{3}{4}$. (Ans.)

And, in descending order they are : $\frac{3}{4}$, $\frac{2}{3}$, $\frac{9}{16}$ and $\frac{5}{12}$. (Ans.)

In order to compare two fractions, say : $\frac{a}{b}$ and $\frac{c}{d}$, find their cross-product, i.e., find a \times d and b \times c. Then, if :

(i) $a \times d$ is greater than $b \times c \Rightarrow \frac{a}{b} > \frac{c}{d}$, (ii) $a \times d$ is less than $b \times c \Rightarrow \frac{a}{b} < \frac{c}{d}$,

(iii) $a \times d$ is equal to $b \times c \Rightarrow \frac{a}{b} = \frac{c}{d}$.

Example 6:

Compare the fractions : $\frac{3}{13}$ and $\frac{7}{18}$.

Solution:

Taking the cross multiplication we get: $3 \times 18 = 54$ and $7 \times 13 = 91$ Since, 3×18 (i.e., 54) is smaller than 7×13 (i.e., 91) $\therefore \frac{3}{13} < \frac{7}{18}$ (Ans.)

4.9 TO INSERT A FRACTION BETWEEN TWO GIVEN FRACTIONS

Steps: Add numerators of the given fractions to get the numerator of required fraction. Similarly, add their denominators to get denominator of the required fraction. Then simplify, if required.

Example 7:

Insert one fraction between:

(i)
$$\frac{1}{2}$$
 and $\frac{3}{5}$ (ii) 2 and $3\frac{1}{2}$

Solution:

(i)
$$\frac{1}{2}$$
, $\frac{3}{5} = \frac{1}{2}$, $\frac{1+3}{2+5}$, $\frac{3}{5}$ [Adding numerators and denominators]
$$= \frac{1}{2}$$
, $\frac{4}{7}$, $\frac{3}{5}$ (Ans.)

Thus, if
$$\frac{a}{b}$$
 and $\frac{c}{d}$ are two fractions then fraction $\frac{a+c}{b+d}$ lies between $\frac{a}{b}$ and $\frac{c}{d}$.

Also, 1. If
$$\frac{a}{b} > \frac{c}{d}$$
, then $\frac{a}{b} > \frac{a+c}{b+d} > \frac{c}{d}$.

2. If $\frac{a}{b} < \frac{c}{d}$, then $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$.

(ii) 2,
$$3\frac{1}{2} = \frac{2}{1}$$
, $\frac{7}{2} = \frac{2}{1}$, $\frac{2+7}{1+2}$, $\frac{7}{2} = 2$, $\frac{9}{3}$, $\frac{7}{2} = 2$, 3, $3\frac{1}{2}$ (Ans.)

Example 8:

Insert three fractions between $\frac{1}{2}$ and $\frac{3}{5}$.

Solution:

$$\frac{1}{2}, \frac{3}{5} = \frac{1}{2}, \frac{1+3}{2+5}, \frac{3}{5}$$

$$= \frac{1}{2}, \frac{4}{7}, \frac{3}{5}$$

$$= \frac{1}{2}, \frac{1+4}{2+7}, \frac{4}{7}, \frac{4+3}{7+5}, \frac{3}{5}$$

[Inserting one fraction between
$$\frac{1}{2}$$
 and $\frac{3}{5}$]

[Inserting one fraction between
$$\frac{1}{2}$$
 and $\frac{4}{7}$;

and one between
$$\frac{4}{7}$$
 and $\frac{3}{5}$]

$$=\frac{1}{2},\frac{5}{9},\frac{4}{7},\frac{7}{12},\frac{3}{5}$$

(Ans.)

EXERCISE 4(B)

1. For each pair, given below, state whether it forms like fractions or unlike fractions:

(i)
$$\frac{5}{8}$$
 and $\frac{7}{8}$

(ii)
$$\frac{8}{15}$$
 and $\frac{8}{21}$ (iii) $\frac{4}{9}$ and $\frac{9}{4}$

(iii)
$$\frac{4}{9}$$
 and $\frac{9}{4}$

Convert given fractions into fractions with equal denominators :

(i)
$$\frac{5}{6}$$
 and $\frac{7}{9}$

(ii)
$$\frac{2}{3}$$
, $\frac{5}{6}$ and $\frac{7}{12}$

(ii)
$$\frac{2}{3}$$
, $\frac{5}{6}$ and $\frac{7}{12}$ (iii) $\frac{4}{5}$, $\frac{17}{20}$, $\frac{23}{40}$ and $\frac{11}{16}$

Convert given fractions into fractions with equal numerators:

(i)
$$\frac{8}{9}$$
 and $\frac{12}{17}$

(ii)
$$\frac{6}{13}$$
, $\frac{15}{23}$ and $\frac{12}{17}$

(i)
$$\frac{8}{9}$$
 and $\frac{12}{17}$ (ii) $\frac{6}{13}$, $\frac{15}{23}$ and $\frac{12}{17}$ (iii) $\frac{15}{19}$, $\frac{25}{28}$, $\frac{9}{11}$ and $\frac{45}{47}$

4. Put the given fractions in ascending order by making denominators equal :

(i)
$$\frac{1}{3}$$
, $\frac{2}{5}$, $\frac{3}{4}$ and $\frac{1}{6}$

(ii)
$$\frac{5}{6}$$
, $\frac{7}{8}$, $\frac{11}{12}$ and $\frac{3}{10}$

(i)
$$\frac{1}{3}$$
, $\frac{2}{5}$, $\frac{3}{4}$ and $\frac{1}{6}$ (ii) $\frac{5}{6}$, $\frac{7}{8}$, $\frac{11}{12}$ and $\frac{3}{10}$ (iii) $\frac{5}{7}$, $\frac{3}{8}$, $\frac{9}{14}$ and $\frac{20}{21}$

5. Arrange the given fractions in descending order by making numerators equal:

(i)
$$\frac{5}{6}$$
, $\frac{4}{15}$, $\frac{8}{9}$ and $\frac{1}{3}$

(ii)
$$\frac{3}{7}$$
, $\frac{4}{9}$, $\frac{5}{7}$ and $\frac{8}{11}$

(i)
$$\frac{5}{6}$$
, $\frac{4}{15}$, $\frac{8}{9}$ and $\frac{1}{3}$ (ii) $\frac{3}{7}$, $\frac{4}{9}$, $\frac{5}{7}$ and $\frac{8}{11}$ (iii) $\frac{1}{10}$, $\frac{6}{11}$, $\frac{8}{11}$ and $\frac{3}{5}$

6. Find the greater fraction:

(i)
$$\frac{3}{5}$$
 and $\frac{11}{15}$

(ii)
$$\frac{4}{5}$$
 and $\frac{3}{10}$

(iii)
$$\frac{6}{7}$$
 and $\frac{5}{9}$

Insert one fraction between:

(i)
$$\frac{3}{7}$$
 and $\frac{4}{9}$

(ii) 2 and
$$\frac{8}{3}$$

(ii) 2 and
$$\frac{8}{3}$$
 (iii) $\frac{9}{17}$ and $\frac{6}{13}$

8. Insert three fractions between:

(i)
$$\frac{2}{5}$$
 and $\frac{4}{9}$

(i)
$$\frac{2}{5}$$
 and $\frac{4}{9}$ (ii) $\frac{1}{2}$ and $\frac{5}{7}$

(iii)
$$\frac{3}{8}$$
 and $\frac{6}{11}$

9. Insert two fractions between:

(i) 1 and
$$\frac{3}{11}$$

(ii)
$$\frac{5}{9}$$
 and $\frac{1}{4}$

(ii)
$$\frac{5}{9}$$
 and $\frac{1}{4}$ (iii) $\frac{5}{6}$ and $1\frac{1}{5}$

4.10 OPERATIONS ON FRACTIONS

1. Addition and Subtraction:

(i) For like fractions, add or subtract (as required) their numerators, keeping the denominator same:

$$\therefore \frac{1}{8} + \frac{5}{8} = \frac{1+5}{8} = \frac{6}{8} = \frac{3}{4} \text{ and } \frac{9}{10} - \frac{3}{10} = \frac{9-3}{10} = \frac{6}{10} = \frac{3}{5}$$

(ii) For unlike fractions, first of all change given fractions into like fractions and then do the addition or subtraction as above :

2. Multiplication:

(i) To multiply a fraction with an integer, multiply its numerator with the integer.

$$\therefore 5 \times \frac{3}{8} = \frac{5 \times 3}{8} = \frac{15}{8} = \frac{17}{8} \text{ and } \frac{4}{15} \times -7 = \frac{4 \times -7}{15} = \frac{-28}{15} = -1\frac{13}{15}.$$

(ii) To multiply two or more fractions, multiply their numerators together and their denominators separately together.

$$\therefore \ \frac{3}{5} \times \frac{2}{7} = \frac{3 \times 2}{5 \times 7} = \frac{6}{35} \text{ and } \frac{3}{8} \times \frac{4}{5} \times \frac{2}{3} = \frac{3 \times 4 \times 2}{8 \times 5 \times 3} = \frac{1}{5}.$$

3. Division:

To divide one quantity (fraction or integer) by some other quantity (fraction or integer), multiply the first by the reciprocal of the second.

e.g. (i)
$$\frac{5}{8} \div 2 = \frac{5}{8} \times \frac{1}{2} = \frac{5}{16}$$
 [Reciprocal of 2 is $\frac{1}{2}$]

(ii) $2 \div \frac{5}{8} = 2 \times \frac{8}{5} = \frac{16}{5} = 3\frac{1}{5}$ [Reciprocal of $\frac{5}{8}$ is $\frac{8}{5}$]

(iii) $\frac{7}{10} \div \frac{3}{4} = \frac{7}{10} \times \frac{4}{3} = \frac{28}{30} = \frac{14}{15}$ and so on.

4.11 USING "OF"

The word "of" between any two fractions, is to be used as multiplication.

e.g. (i)
$$\frac{3}{16}$$
 of $2 = \frac{3 \times 2}{16} = \frac{3}{8}$

(ii)
$$\frac{1}{3}$$
 of 18 kg = $\frac{1 \times 18}{3}$ kg = 6 kg

(iii)
$$\frac{3}{4}$$
 of ₹ 16 = ₹ $\frac{3 \times 16}{4}$ = ₹ 12 and so on.

4.12 USING "BODMAS" :

The word 'BODMAS' is the abbreviation formed by taking the initial letters of six operations; 'Bracket', 'Of', 'Division', 'Multiplication', 'Addition' and 'Subtraction'.

According to the rule of BODMAS, working must be done in the order corresponding to the letters appearing in the word, *i.e.*, first of all the terms inside Bracket must be simplified; then Of must be simplied and then Division, Multiplication, Addition and finally Subtraction.

e.g.
$$\left(\frac{1}{3} + \frac{2}{9}\right)$$
 of $\frac{8}{15} \div \frac{4}{9} \times \frac{3}{4} - \frac{1}{2} + 1$

= $\left(\frac{3+2}{9}\right)$ of $\frac{8}{15} \div \frac{4}{9} \times \frac{3}{4} - \frac{1}{2} + 1$ First step (B) : Simplifying the Bracket.

= $\frac{5}{9}$ of $\frac{8}{15} \div \frac{4}{9} \times \frac{3}{4} - \frac{1}{2} + 1$ Second step (O) : Removal of 'Of'

= $\frac{8}{27} \times \frac{9}{4} \times \frac{3}{4} - \frac{1}{2} + 1$ Third step (D) : Division, *i.e.*, multiply by reciprocal.

= $\frac{8 \times 9 \times 3}{27 \times 4 \times 4} - \frac{1}{2} + 1$ Fourth step (M) : Multiplication.

= $\frac{1}{2} - \frac{1}{2} + 1$ Fifth step : A and S

= 1

Example 9:

Evaluate:

(i)
$$2\frac{1}{4} \div \frac{5}{7} \times 1\frac{1}{3}$$

(ii)
$$\frac{1}{4}$$
 of $2\frac{2}{7} \div \frac{4}{15}$

Solution:

If required, convert the mixed fraction / fractions into improper fraction / fractions, then apply BODMAS and simplify.

(i)
$$2\frac{1}{4} \div \frac{5}{7} \times 1\frac{1}{3} = \frac{9}{4} \div \frac{5}{7} \times \frac{4}{3}$$

= $\frac{9}{4} \times \frac{7}{5} \times \frac{4}{3} = \frac{9 \times 7 \times 4}{4 \times 5 \times 3} = \frac{21}{5} = 4\frac{1}{5}$ (Ans.)

(ii)
$$\frac{1}{4}$$
 of $2\frac{2}{7} \div \frac{4}{15} = \frac{1}{4}$ of $\frac{16}{7} \div \frac{4}{15}$
$$= \frac{4}{7} \div \frac{4}{15}$$
$$= \frac{4}{7} \times \frac{15}{4} = \frac{15}{7} = 2\frac{1}{7}$$

$$\left[\because \frac{1}{4} \text{ of } \frac{16}{7} = \frac{1}{4} \times \frac{16}{7} = \frac{4}{7} \right]$$
(Ans.)

Example 10:

Evaluate:

(i)
$$\frac{4}{5} \div \frac{7}{15}$$
 of $\frac{8}{9}$

(ii)
$$\frac{4}{5} \div \frac{7}{15} \times \frac{8}{9}$$

(iii)
$$\frac{5}{6}$$
 of $\frac{5}{13} \div \frac{15}{16} \times 1\frac{1}{2}$

Solution :

Remember : BODMAS

(i)
$$\frac{4}{5} \div \frac{7}{15}$$
 of $\frac{8}{9} = \frac{4}{5} \div \frac{56}{135}$
$$= \frac{4}{5} \times \frac{135}{56} = \frac{27}{14} = 1\frac{13}{14}$$
 (Ans.)

(ii)
$$\frac{4}{5} \div \frac{7}{15} \times \frac{8}{9} = \frac{4}{5} \times \frac{15}{7} \times \frac{8}{9}$$

$$= \frac{4 \times 15 \times 8}{5 \times 7 \times 9} = \frac{32}{21} = 1\frac{11}{21}$$
(Ans.)

(iii)
$$\frac{5}{6}$$
 of $\frac{5}{13} \div \frac{15}{16} \times 1\frac{1}{2} = \frac{25}{78} \div \frac{15}{16} \times \frac{3}{2}$

$$= \frac{25}{78} \times \frac{16}{15} \times \frac{3}{2} = \frac{25 \times 16 \times 3}{78 \times 15 \times 2} = \frac{20}{39}$$
 (Ans.)

EXERCISE 4(C) -

1. Reduce to a single fraction:

(i)
$$\frac{1}{2} + \frac{2}{3}$$

(ii)
$$\frac{3}{5} - \frac{1}{10}$$

(iii)
$$\frac{2}{3} - \frac{1}{6}$$

(iv)
$$1\frac{1}{3} + 2\frac{1}{4}$$

(v)
$$\frac{1}{4} + \frac{5}{6} - \frac{1}{12}$$

(vi)
$$\frac{2}{3} - \frac{3}{5} + 3 - \frac{1}{5}$$

(vii)
$$\frac{2}{3} - \frac{1}{5} + \frac{1}{10}$$

(viii)
$$2\frac{1}{2} + 2\frac{1}{3} - 1\frac{1}{4}$$

(ix)
$$2\frac{5}{8} - 2\frac{1}{6} + 4\frac{3}{4}$$

2. Simplify:

(i)
$$\frac{3}{4} \times 6$$

(ii)
$$\frac{2}{3} \times 15$$

(iii)
$$\frac{3}{4} \times \frac{1}{2}$$

(iv)
$$\frac{9}{12} \times \frac{4}{7}$$

(v)
$$45 \times 2\frac{1}{3}$$

43

(vi)
$$36 \times 3\frac{1}{4}$$

(vii)
$$2 \div \frac{1}{3}$$

(viii)
$$3 \div \frac{2}{5}$$

(ix)
$$1 \div \frac{3}{5}$$

(x)
$$\frac{1}{3} \div \frac{1}{4}$$

(xi)
$$-\frac{5}{8} \div \frac{3}{4}$$

(xii)
$$3\frac{3}{7} \div 1\frac{1}{14}$$

(xiii)
$$3\frac{3}{4} \times 1\frac{1}{5} \times \frac{20}{21}$$

3. Subtract:

(i) 2 from
$$\frac{2}{3}$$

(ii)
$$\frac{1}{8}$$
 from $\frac{5}{8}$

(iii)
$$-\frac{2}{5}$$
 from $\frac{2}{5}$

(iv)
$$-\frac{3}{7}$$
 from $\frac{3}{7}$

(v) 0 from
$$-\frac{4}{5}$$

(vi)
$$\frac{2}{9}$$
 from $\frac{4}{5}$

(vii)
$$-\frac{4}{7}$$
 from $-\frac{6}{11}$

4. Find the value of :

(i)
$$\frac{1}{2}$$
 of 10 kg

(ii)
$$\frac{3}{5}$$
 of 1 hour

(iii)
$$\frac{4}{7}$$
 of $2\frac{1}{3}$ kg

(iv)
$$3\frac{1}{2}$$
 times of 2 metre

(v)
$$\frac{1}{2}$$
 of $2\frac{2}{3}$

(vi)
$$\frac{5}{11}$$
 of $\frac{4}{5}$ of 22 kg

5. Simplify and reduce to a simple fraction :

(i)
$$\frac{3}{3\frac{3}{4}}$$

(ii)
$$\frac{\frac{3}{5}}{7}$$

(iii)
$$\frac{3}{\frac{5}{7}}$$
 (iv) $\frac{2\frac{1}{5}}{\frac{1}{10}}$

(v)
$$\frac{2}{5}$$
 of $\frac{6}{11} \times 1\frac{1}{4}$

(vi)
$$2\frac{1}{4} \div \frac{1}{7} \times \frac{1}{3}$$

(vi)
$$2\frac{1}{4} \div \frac{1}{7} \times \frac{1}{3}$$
 (vii) $\frac{1}{3} \times 4\frac{2}{3} \div 3\frac{1}{2} \times \frac{1}{2}$

(viii)
$$\frac{2}{3} \times 1\frac{1}{4} \div \frac{3}{7}$$
 of $2\frac{5}{8}$

(ix)
$$0 \div \frac{8}{11}$$

(ix)
$$0 \div \frac{8}{11}$$
 (x) $\frac{4}{5} \div \frac{7}{15}$ of $\frac{8}{9}$

(xi)
$$\frac{4}{5} \div \frac{7}{15} \times \frac{8}{9}$$

(xii)
$$\frac{4}{5}$$
 of $\frac{7}{15} \div \frac{8}{9}$ (xiii) $\frac{1}{2}$ of $\frac{3}{4} \times \frac{1}{2} \div \frac{2}{3}$

USING BRACKETS 4.13

The types of brackets used, in general, are:

-) is known as Circular bracket or Parenthesis or simply bracket.
- } is known as Curly bracket.
-] is known as Square bracket or Box bracket.

Sometimes a bar is drawn above some terms which we want to treat as a single quantity.

e.g., (i)
$$\overline{4+5}$$
 means $(4+5)=9$ (ii) $8-\overline{3+2}=8-5=3$

(ii)
$$8 - \overline{3 + 2} = 8 - 5 = 3$$

(iii)
$$3 + 8 - 6 = 3 + 2 = 5$$
 and so on.

This "---" is known as Bar bracket or Veniculum.

Note: Multiplication sign is often omitted before a bracket and between the brackets.

e.g., (i)
$$4(9-3) = 4 \times (9-3) = 4 \times 6 = 24$$

(ii)
$$(2+8)(7-3) = (2+8) \times (7-3) = 10 \times 4 = 40$$

REMOVAL OF BRACKETS

The brackets are removed in the order given below:

- ; bar or vinculum,
-); parenthesis,

}; curly bracket,

]; square bracket. (iv)

Example 11:

Simplify:
$$10\frac{1}{2} - \left[8\frac{1}{2} + \{6 - (7 - \overline{6 - 4})\}\right]$$

Solution:

$$= 10\frac{1}{2} - \left[8\frac{1}{2} + \{6 - (7 - 2)\} \right]$$

$$[\because \overline{6-4}=2]$$

$$= 10\frac{1}{2} - \left[8\frac{1}{2} + \{6 - 5\} \right]$$

$$[\because (7-2)=5]$$

$$= 10\frac{1}{2} - \left[8\frac{1}{2} + 1\right]$$

$$[\because \{6-5\} = 1]$$

$$= 10\frac{1}{2} - 9\frac{1}{2}$$

$$\left[\because 8\frac{1}{2} + 1 = 9\frac{1}{2} \right]$$

(Ans.)

Whenever there is a positive (+) sign before a bracket, the bracket is removed without any change in the signs of its terms.

e.g.,
$$8 + (3 - 1 + 5) = 8 + 3 - 1 + 5 = 16 - 1 - 15$$

- 2. Whenever there is a negative (-) sign before a bracket, the bracket is removed by changing the signs of all the terms inside the bracket (i.e., by changing every positive sign into negative and every negative sign into positive)
 - 8 (3 1 + 5) = 8 3 + 1 5 = 9 8 = 1e.g.,

EXERCISE 4(D)

Simplify:

1.
$$6 + \left\{ \frac{4}{3} + \left(\frac{3}{4} - \frac{1}{3} \right) \right\}$$

2.
$$8 - \left\{ \frac{3}{2} + \left(\frac{3}{5} - \frac{1}{2} \right) \right\}$$

3.
$$\frac{1}{4} \left(\frac{1}{4} + \frac{1}{3} \right) - \frac{2}{5}$$

4.
$$2\frac{3}{4} - \left[3\frac{1}{8} \div \left\{5 - \left(4\frac{2}{3} - \frac{11}{12}\right)\right\}\right]$$

5.
$$12\frac{1}{2} - \left[8\frac{1}{2} + \left\{9 - \left(5 - \overline{3 - 2}\right)\right\}\right]$$
 6. $1\frac{1}{5} \div \left\{2\frac{1}{3} - \left(5 + \overline{2 - 3}\right)\right\} - 3\frac{1}{2}$

6.
$$1\frac{1}{5} \div \left\{2\frac{1}{3} - \left(5 + \overline{2 - 3}\right)\right\} - 3\frac{1}{2}$$

7.
$$\left(\frac{1}{2} + \frac{2}{3}\right) \div \left(\frac{3}{4} - \frac{2}{9}\right)$$

8.
$$\frac{6}{5}$$
 of $\left(3\frac{1}{3}-2\frac{1}{2}\right)\div\left(2\frac{5}{21}-2\right)$

9.
$$10\frac{1}{8}$$
 of $\frac{4}{5} \div \frac{35}{36}$ of $\frac{20}{49}$

10.
$$5\frac{3}{4} - \frac{3}{7} \times 15\frac{3}{4} + 2\frac{2}{35} \div 1\frac{11}{25}$$

11.
$$\frac{3}{4}$$
 of $7\frac{3}{7} - 5\frac{3}{5} \div 3\frac{4}{15}$

4.15 PROBLEMS INVOLVING FRACTIONS

Example 12:

What fraction is 6 bananas of four dozen bananas ?

Solution:

Here 6 bananas are to be compared with 4 dozens i.e., $4 \times 12 = 48$ bananas.

$$\therefore \text{ Required fraction} = \frac{6}{48} = \frac{1}{8}$$
 (Ans.)

Example 13:

Write all the natural numbers that lie between 5 and 15.

- (i) How many of these natural numbers are odd?
- (ii) What fraction of these natural numbers are even ?

Solution:

Since, natural numbers between 5 and 15 are: 6, 7, 8, 9, 10, 11, 12, 13 and 14.

- :. There are 9 natural numbers between 5 and 15. (Ans.)
- (i) Out of these natural numbers, odd natural numbers are: 7, 9, 11 and 13.
 - :. There are 4 odd natural numbers between 5 and 15. (Ans.)
- (ii) Out of all the given 9 natural numbers, 4 are odd.
 - \therefore Remaining 9 4 = 5 numbers are even.

So, the required fraction =
$$\frac{5}{9}$$
 (Ans.)

Example 14:

The monthly income of a man is ₹ 18,000. He gives one-third of it to his wife and one-third of the remaining he spends on his children's education. Find :

- (i) the money he gave to his wife.
- (ii) the money he spends on his children's education.
- (iii) the money still left with him.

Solution:

(i) The man gives to his wife =
$$\frac{1}{3}$$
 of ₹ 18,000
= $\frac{1}{3} \times ₹ 18,000 = ₹ 6,000$ (Ans.)

(ii) Since, remaining money = ₹ 18,000 - ₹ 6,000 = ₹ 12,000

He spends on his children's education
$$= \frac{1}{3} \times \text{ } 12,000 = \frac{1}{3} \times \text{ } 12,000 = \text{ } 4,000 \text{ (Ans.)}$$

(iii) The money still left with the man

Example 15:

Subtract the sum of $\frac{1}{4}$ and $\frac{3}{8}$ from the sum of $\frac{2}{3}$, $\frac{3}{4}$ and $\frac{7}{12}$.

Solution:

$$\therefore \text{ Sum of } \frac{1}{4} \text{ and } \frac{3}{8} = \frac{1}{4} + \frac{3}{8} = \frac{2+3}{8} = \frac{5}{8}$$
And, sum of $\frac{2}{3}$, $\frac{3}{4}$ and $\frac{7}{12} = \frac{2}{3} + \frac{3}{4} + \frac{7}{12} = \frac{8+9+7}{12} = \frac{24}{12} = 2$

$$\therefore \text{ Required number} = 2 - \frac{5}{8} = \frac{2}{1} - \frac{5}{8} = \frac{16-5}{8} = \frac{11}{8} = 1\frac{3}{8}$$
or, directly, $\left(\frac{2}{3} + \frac{3}{4} + \frac{7}{12}\right) - \left(\frac{1}{4} + \frac{3}{8}\right) = \left(\frac{8+9+7}{12}\right) - \left(\frac{2+3}{8}\right)$

$$= \frac{24}{12} - \frac{5}{8}$$

$$= \frac{48-15}{24} = \frac{33}{24} = \frac{11}{8} = 1\frac{3}{8} \quad \text{(Ans.)}$$

Example 16:

A man spent $\frac{2}{7}$ of his savings and still has ₹ 1,000 left with him. How much were his savings ?

Solution:

The man spent $\frac{2}{7}$ of his money.

 \therefore He still has $1 - \frac{2}{7} = \frac{5}{7}$ of his savings

Note: In fractions, the whole quantity is always taken as 1.

Since, $\frac{5}{7}$ of his savings = ₹ 1,000

His savings = ₹ 1,000 ÷
$$\frac{5}{7}$$
 = ₹ 1,000 × $\frac{7}{5}$ = ₹ 1,400 (Ans.)

Example 17:

 $\frac{4}{7}$ of a pole is in the mud. When $\frac{1}{3}$ of it is pulled out, 250 cm of the pole is still in the mud. What is the full length of the pole?

Solution:

$$\frac{4}{7} \text{ of the pole} - \frac{1}{3} \text{ of the pole} = 250 \text{ cm}$$

$$\Rightarrow \qquad \left(\frac{4}{7} - \frac{1}{3}\right) \text{ of the pole} = 250 \text{ cm}$$

$$\Rightarrow \qquad \frac{5}{21} \text{ of the pole} = 250 \text{ cm} \qquad \left[\frac{4}{7} - \frac{1}{3} = \frac{12 - 7}{21} = \frac{5}{21}\right]$$

$$\Rightarrow \qquad \text{Length of the pole} = 250 \times \frac{21}{5} \text{ cm} = 1050 \text{ cm} \qquad (Ans.)$$

- 1. A line AB is of length 6 cm. Another line CD is of length 15 cm. What fraction is :
 - (i) the length of AB to that of CD?
 - (ii) $\frac{1}{2}$ the length of AB to that of $\frac{1}{3}$ of CD?
 - (iii) $\frac{1}{5}$ of CD to that of AB?
- 2. Subtract $\left(\frac{2}{7} \frac{5}{21}\right)$ from the sum of $\frac{3}{4}$, $\frac{5}{7}$ and $\frac{7}{12}$.
- 3. From a sack of potatoes weighing 120 kg, a merchant sells portions weighing 6 kg, $5\frac{1}{4}$ kg, $9\frac{1}{2}$ kg and $9\frac{3}{4}$ kg respectively.
 - (i) How many kg did he sell? (ii) How many kg are still left in the sack?
- 4. If a boy works for six consecutive days for 8 hours, 7 1/2 hours, 8 1/4 hours, 6 1/4 hours,
 6 3/4 hours and 7 hours respectively. How much money will he earn at the rate of ₹ 36 per hour?
- 5. A student bought $4\frac{1}{3}$ m of yellow ribbon, $6\frac{1}{6}$ m of red ribbon and $3\frac{2}{9}$ m of blue ribbon for decorating a room. How many metres of ribbon did he buy?
- 6. In a business, Ram and Deepak invest $\frac{3}{5}$ and $\frac{2}{5}$ of the total investment. If ₹ 40,000 is the total investment, calculate the amount invested by each.
- 7. Geeta had 30 problems for home work. She worked out $\frac{2}{3}$ of them. How many problems were still left to be worked out by her?
- 8. A picture was marked at ₹ 90. It was sold at $\frac{3}{4}$ of its marked price. What was the sale price ?
- 9. Mani had sent fifteen parcels of oranges. What was the total weight of the parcels, if each weighed $10\frac{1}{2}$ kg?
- 10. A rope is $25\frac{1}{2}$ m long. How many pieces each of $1\frac{1}{2}$ m length can be cut out from it?
- 11. The heights of two vertical poles, above the earth's surface, are $14\frac{1}{4}$ m and $22\frac{1}{3}$ m respectively. How much higher is the second pole as compared with the height of the first pole?
- 12. Vijay weighed $65\frac{1}{2}$ kg. He gained $1\frac{2}{5}$ kg during the first week, $1\frac{1}{4}$ kg during the second week, but lost $\frac{5}{16}$ kg during the third week. What was his weight after the third week?

- 13. A man spends $\frac{2}{5}$ of his salary on food and $\frac{3}{10}$ on house rent, electricity, etc. What fraction of his salary is still left with him?
- 14. A man spends $\frac{2}{5}$ of his salary on food and $\frac{3}{10}$ of the remaining on house rent, electricity, etc. What fraction of his salary is still left with him?
- 15. Shyam bought a refrigerator for ₹ 5,000. He paid $\frac{1}{10}$ of the price in cash and the rest in 12 equal monthly instalments. How much had he to pay each month?
- 16. A lamp post has half of its length in mud and $\frac{1}{3}$ of its length in water.
 - (i) What fraction of its length is above the water?
 - (ii) If $3\frac{1}{3}$ m of the lamp post is above the water, find the whole length of the lamp post.
- 17. I spent $\frac{3}{5}$ of my savings and still have ₹ 2,000 left. What were my savings ?
- 18. In a school; $\frac{4}{5}$ of the children are boys. If the number of girls is 200, find the number of boys.
- 19. If $\frac{4}{5}$ of an estate is worth ₹ 42,000, find the worth of whole estate. Also, find the value of $\frac{3}{7}$ of it.

THE REAL PROPERTY OF THE PARTY OF THE PARTY

- 20. After going $\frac{3}{4}$ of my journey, I find that I have covered 16 km. How much journey is still left?
- 21. When Krishna travelled 25 km, he found that $\frac{3}{5}$ of his journey was still left. What was the length of the whole journey.