CHAPTER 20
TRIANGLES

(Including Types, Properties and Constructions)

20.1 | TRIANGLE :

A triangle is a plane closed figure bounded by three line segments.

In the adjoining figure, the line segments AB, BC and A
CA form the triangle ABC.

The three line segments AB, BC and CA are the
sides of the triangle ABC.

A triangle is denoted by the Greek letter A (delta). B C
Thus, triangle ABC can be written as A ABC.

e

20.2 | VERTEX :

BC is the side
opposite to
vertex A and A
is the vertex
opposite to side
BC. The same is
true for vertex B
and side AC,
and for vertex C
and side AB.

Vertex of a triangle is a point where any two of its sides meet.
In the figure given above, the sides AB and AC meet at point A.
. A is a vertex of A ABC.

Similarly,vertex B = the point where the sides BC and AB meet.

And, vertex C = the point where the sides AC and BC meet.
' The plural of vertex is vertices.
Thus, A, B and C are the three vertices of the triangle ABC.

20.3 | ANGLES (INTERIOR ANGLES) OF A TRIANGLE :

Every triangle has three angles.

In the triangle ABC drawn alongside, the three angles A
(interior angles) are : ZBAC, ZABC and ZACB.

(i)  An interior angle of a triangle can also be denoted
by the letter representing the corresponding vertex.
Consider ZABC, since it is formed at vertex B,
it can be written as £B.
Thus, ZABC = /B, ZBCA = £C and £ZBAC = ZA, all are interior angles of
the triangle ABC.

(i)  The sum of the interior angles of a triangle is always 180°, i.e. two right angles.

B C

- In A ABC, ZA + 2B + £C = 180°,
and in A PQR, /P + /ZQ + /R = 180° and so on.
2 Each triangle has three sides, three vertices and three angles (interior angles).

5> AABC can also be written as A BAC or A BCA or A CAB, or A ACB or A CBA i.e. the
three letters representing a triangle can be written in any order.

20.4 | EXTERIOR ANGLE OF A TRIANGLE :

When any side of a triangle is extended, the angle formed outside the triangle is
called an exterior angle.
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20.5 | SOME IMPORTANT RESULTS :

1. An exterior angle of a triangle is an adjacent and supplementary angle to the
corresponding interior angle of the triangle.

At each vertex,
exterior angle
+ interior angle
= 180°.

For example :

In the figure given alongside, the side BC of A
A ABC is extended up to point D, thus forming an
exterior angle ACD. The exterior angle ACD is adjacent
and supplementary to the corresponding interior ZACB

of the A ABC j.e. ZACD + ZACB = 180°. B C
2. An exterior angle of a triangle is always equal to the sum of its two opposite interior
angles.

For example :

In the given figure, exterior angle ABD is formed
by extending the side CB of the triangle ABC.

. Exterior angle ABD
= Sum of interior opposite angles A and C,
le. ZABD = ZA + £C.

3. On extending the sides of a triangle, six exterior
angles are formed, two at each vertex.

The adjoining figure shows the six exterior angles
formed by extending the sides of the triangle ABC.

D« C

20.6 | CONSIDER THE FOLLOWING TABLE :
Exterior | Adjacent Interior Relation between an Relation between an
Angle Interior opposite exterior angle and its exterior angle and the
Angle Angles adjacent interior angle | interior opposite angles
Z1 ZA ZB and £C Z1 + ZA = 180° Z1 = ZB + £ZC
£2 ZA ZB and £C Z2 + ZA = 180° Z2 = /B + £C
£3 ZB ZA and £C Z3 + ZB = 180° £3 = ZA + £C
Z4 ZB ZA and £C Z4 + ZB = 180° Z4 = /A + £C
£5 ZC ZA and /B /5 + ZC = 180° Z5= /A + /B
Z6 ’ £C ZA and £B Z6 + ZC = 180° Z6 = ZA + /B
Example 1 :
For each triangle given below, find the value of x :
(i) A (ii
3x
B il £ C D
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Solution : .
(1) ZA + ZB + ZC

= 1807
=5 3x + 60° + x = 180° Sum of the <
= ° _ aN° angles of a
4x = 180° - 60 i e
4x = 120°
120°
X = = 30° (Ans.)
4
(i) /ACD = /A + /B —
Qs Exterior angle of a <
o5 115% = 2x + 3X A = sum of interior
B =11S opposite angles.
TS
Sliadi 23° (Ans.)
Alternative method :
ZACD + ZACB = 180° At each “9'1?"-
- g 6 exterior angle
= 115° + ZACB = 180 + interior angle
=> ZACB = 180° — 1158° = 65°
Now, in A ABC
ZA + ZB + ZC = 180°
- 2X + 3x + 65° = 180°
115°
bx = . 180" =Bb i=«4ilD" e T e 23° (Ans.)

20.7 | TYPES OF TRIANGLES ACCORDING TO ANGLES :
Depending on the sizes of its angles, a triangle can be classified as :
1.  Acute-angled triangle 2. Right-angled triangle
3. Obtuse-angled triangle.

1. Acute-angled triangle :

If each angle of a triangle is acute (less than 90°), it
is called an acute-angled triangle.

The adjoining figure shows an acute-angled triangle;
each of its angles is less than 90°.
2. Right-angled triangle :

If one of the angles of a triangle is a right angle P
i.e. 90° it is called a right-angled triangle.

The figure given alongside shows a right angled
triangle PQR, as ZPQR = 90°.

Sum of the two acute angles of a right angled o °
triangle is always 90°, i.e. ZP + ZR = 90°.

In a right-angled triangle, the side opposite to the right angle is called the
hypotenuse. Hypotenuse is the largest side of a right angled triangle.

In the given A PQR, side PR is opposite to angle Q, which is a right angle.
Therefore, PR is the hypotenuse. Also, PR > PQ and PR > QR.
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3. Obtuse-angled triangle :
If an angle of a triangle is obtuse (more than 90°),
the triangle is called an obtuse-angled triangle.

In the adjoining figure, A XYZ is an obtuse-angled
triangle, as ZXYZ = 110°, i.e. ZXYZ is an obtuse angle.

20.8 | TYPES OF TRIANGLES ACCORDING TO SIDES :

On the basis of sides, a triangle can be classified as :
1. Isosceles triangle 2. Equilateral triangle 3. Scalene triangle.
1. Isosceles triangle : P

A triangle, with atleast two sides equal is called an
isosceles triangle.

In the given figure, PQR is an isosceles triangle, as Q i
FQ = PR.

In an isosceles triangle, the angles opposite to the equal sides are equal.
Thus, PQ = PR = Angle opposite to PQ = Angle opposite to PR, i.e. ZR = ZQ.

2. Equilateral triangle : X
A triangle, with all its sides equal is called an equilateral triangle.

In the figure given alongside, XYZ is an equilateral triangle as :
side XY = side YZ = side XZ.

In an equilateral triangle, all angles are equal,
i@ ZXYZ = LYXZ = LXZX.

Since the sum of all the three interior angles of every triangle is 180°

180°
therefore each interior angle of an equilateral triangle = s 60°.

Y H Z

Thus, in an equilateral A XYZ :
(i) XY = YZ = ZX and (ii) £XYZ = £YXZ = ZXZY = 60°.

Every equilateral triangle is isosceles; but the converse is not always true.

3. Scalene triangle :
If the three sides of a triangle are unequal, i.e. if the
sides are of different lengths, the triangle is called a
scalene triangle.

3-5cm

e EXERCISE  20(A)
1.  In each of the following, find the marked unknown angles :

(i) X (i) (iit)
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2.  Can a triangle together have the following angles ?
() 55° 55° and 80° (i) 33° 74° and 73° (iii) 85° 95° and 22°

A triangle can together have the given angles if the sum of these angles is 180°.

3.  Find x, if the angles of a triangle are :

(- X°, %%, X° (i) x°, 2%, 2x° (iii) 2x°, 4x°, 6x°
One angle of a right-angled triangle is 70°. Find the other acute angle.
In A ABC, ZA = 4B = 62°; find £C.

In A ABC, 4B = £ZC and ZA = 100°; find ZB.

it

e . LR

Find, giving reasons, the unknown marked angles in each triangle drawn below :
(i 5 (i A
110°()\'

110°
30°

8.  Classify the following triangles according to angle :
(i) A (ii) g (iii)

&o
80°

120° > 70° 30°
. 32 c. Q R

9. Classify the following triangles according to side :

0 i 5 (i)

(7
13 o z
L %
4",

B C
3cm
M—=5sem < M

3¢cm

2cm

20.9 | CONSTRUCTION OF TRIANGLES :

Here, we shall be constructing a triangle when any one of the following three
conditions is given :

1. The lengths of the three sides.

2. The lengths of two sides and the angle included between these two sides.

3. Any two angles and the included side i.e. the side common to both the angles.

Construction 1 :
When the lengths of three sides are given.

Example 2 :
Construct a A ABC such that CB =4 cm, AC =6 cm and AB = 7-6 cm
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Steps :

C
1. Draw a rough sketch of the triangle, as shown alongside. i >
2. Draw one of the sides, say, AB = 7.6 cm. ’ >
A
We can draw any side first, but usually we start with L

the longest side.
3. Using compass and taking A as centre, draw an
arc of radius 6 cm.

4. With B as centre, draw an arc of radius 4 cm, that
cuts the first arc at point C.

5. Join AC and BC. o 7-6 cm
The triangle ABC so obtained is the required triangle.

Construction 2 :

When two sides and the included angle (i.e. the angle formed between the
two given sides) are given.

Example 3 :
Construct a A ABC given AB = 3 cm, BC =5 cm and ZABC = 60".

Steps :
1. Draw a rough sketch of the triangle as shown alongside.
2. Draw BC =5 cm. ﬁ
3. With the help of compass, construct ZPBC = 60°. ' Eooh
4. With B as centre, draw an arc of 3 cm length which imEerel

cuts BP at point A.
s> BA=3cm
5. Join A and C.

Clearly, the triangle ABC so obtained is the required
triangle.

Construction 3 : -
When two angles and included side are given.
Example 4 :
Construct A ABC when AB = 4 cm, ZA =60° and £B =30 ¢
Steps :
1. Draw AB = 4 cm. ﬂ :
2. At A, draw AP making an angle of 60° with AB, s 4cm e
i.e. draw angle PAB = 60°. [Rough sketch]
3. At B, draw BQ making an angle of 30° with AB,
ie. ZQBA = 30°.

4. AP and BQ intersect each other at point C.

The triangle ABC so obtained is the required
triangle.
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EXERCISE 20(B)

Construct triangle ABC when :

9 L0 ™. O N B o

—
=

9.

AB = 6 cm, BC = 8 cm and AC = 4 cm.

AB = 3.5 cm, AC = 4.8 cm and BC = 5.2 cm.

AB = BC = 5 cm and AC = 3 cm. Measure angles A and C. Is ZA = ZC ?

AB = BC = CA = 4.5 cm. Measure all the angles of the triangle. Are they equal ?
AB =3 cm, BC =7 cm and ZB = 90°.

AC = 4.5 cm, BC =6 cm and ZC = 60°.

AC = 6 cm, ZA = 60° and ZC = 45°. Measure AB and BC.

AB = 54 cm, ZA = 30° and ZB = 90°. Measure £C and side BC.

AB =7 cm, £B = 120° and ZA = 30°. Measure AC and BC.

BC =3 cm, AC = 4 cm and AB = 5 cm. Measure angle ACB. Give a special name to
this triangle.

Revision Exercise (Chapter 20)

. If each of the two equal angles of an isosceles triangle is 68°, find the third angle.

One of the angles of a triangle is 110°, the two other angles are equal. Find their value.
The angles of a triangle are in the ratio 3 : 5 : 7. Find each angle.

The angles of a triangle are (2x — 30°), (3x — 40°) and (-Z-x + 10°). Find the value of x.

In each of the figures given alongside, (a) (b) :
triangle ABC is equilateral and triangle A
PBC is isosceles. If PBA = 20°, find in
each case :
(@) angle PBC (b) angle BPC.
B C B C

Construct a triangle ABC given AB = 6 cm, BC = 5 cm and CA = 5:6 cm. From vertex A
draw a perpendicular on to side BC. Measure the length of this perpendicular.

Construct a triangle PQR given PQ = 6 cm, £ZP = 60° and £Q = 30°. Measure angle R and
the length of PR.

Construct a triangle ABC given BC = 5 cm, AC = 6 cm and ZC = 75°. Draw the bisector of
the interior angle at A. Let this bisector meet BC at P; measure BP.

Using ruler and compass only, construct a triangle XYZ given YZ = 7 cm, £XYZ = 60° and
ZXZY = 45°. Draw the bisectors of angles X and Y.

10.Using ruler and compass only, construct a triangle PQR given PQ = 5-5 cm,

11.

QR = 7.5 cm and RP = 6 cm. Draw the bisectors of the interior angles at P, Q and R.
Do these bisectors meet at the same point ?

One angle of a triangle is 80° and the other two are in the ratio 3 : 2. Find"the unknown
angles of the triangle. A

12. Find the value of x if ZA = 32°, /B = 55°

and obtuse angle AED = 115°.
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