

Ammonia

IMPORTANT POINTS TO REMEMBER

- 1. Nitrogen was discovered by **Daniel Rutherford**. The properties of this gas were studied by **Lavoisier** and **Chaptal** named the gas as Nitrogen.
- 2. Nitrogen is present in group 15 and in second period in the periodic table.

Mass number	Atomic number	No. of protons(p)	No. of neutrons(n)	No. of electrons (e)
14	7 3 8 7 1	particular 7 and opin	allo cognity i figura	7 10 10 10 10 10 10 10 10 10 10 10 10 10

Electronic configuration: 2, 5

3. Nitrogen forms a diatomic molecule.

 $N \equiv N$

N₂- Triple covalent bond

- 4. Nitrogen occurs in free state as well as in combined state in the form of Nitrates.
- 5. Preparation of Nitrogen by Industrial methods:

Industrially, Nitrogen is prepared by the fractional distillation of liquified air which involves following steps:

- (a) Purification of air Air is a mixture of dust particles, Carbon dioxide, Water vapour, Oxygen, Nitrogen and traces of Inert gases. Air is passed through filters to remove dust particles and then passed through soda lime (NaOH + CaO) which absorbs Carbon dioxide, and finally through anhydrous Calcium chloride to absorb moisture.
- (b) Liquifaction of purified air The purified air is repeatedly compressed, circulated through special pipes and finally it is allowed to escape through a small

nozzle till the air is cooled sufficiently and finally liquified.

- (c) Fractional distillation of liquified air
 Liquid Nitrogen having lower boiling point distils out first leaving behind liquid Oxygen.
 - 6. Preparation of Nitrogen by Chemical methods:

In general, Nitrogen is prepared chemically:

(a) By passing Ammonia over heated Copper oxide and Lead oxide

(b) By mixing Chlorine with excess of Ammonia

8NH₃ + 3Cl₂
$$\longrightarrow$$
 6NH₄Cl + N₂
Ammonia Chlorine Ammonium chloride

(c) Ammonia is burnt in atmosphere of Oxygen. It burns with green flame.

(d) By passing Ammonia over bleaching powder

(e) By heating Ammonium dichromate

$$(\mathrm{NH_4})_2\mathrm{Cr}_2\mathrm{O}_7 \stackrel{\Delta}{\longrightarrow} \mathrm{Cr}_2\mathrm{O}_3 + 4\mathrm{H}_2\mathrm{O} + \mathrm{N}_2$$

(f) In laboratory, Nitrogen is prepared by heating the solution of Ammonium chloride and Sodium nitrite. In solid state, they are not heated because Ammonium chloride in solid state sublimes on heating.

 $NH_4Cl + NaNO_2 \xrightarrow{\Delta} NH_4NO_2 + NaCl$

$$NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$$

Nitrogen cannot be obtained by heating only Ammonium nitrite as it is highly unstable and readily decomposes even at room temperature.

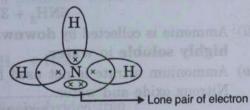
- Nitrogen obtained is collected over Water as it is practically insoluble in Water.
- 8. Nitrogen obtained from air is more denser as compared to the Nitrogen obtained from chemicals because Nitrogen obtained from air contains traces of inert gases.
- 9. Nitrogen is a colourless, odourless, tasteless gas which is practically insoluble in water. It is non-poisonous in nature however animals die in the atmosphere of Nitrogen due to want of Oxygen.
- 10. Chemically, Nitrogen is non-reactive at ordinary temperature because of the presence of a triple covalent bond in its molecule.
- 11. Nitrogen is neutral towards litmus.
- 12. Nitrogen is neither combustible nor a supporter of combustion.
- 13. Burning metals like Calcium, Magnesium and Aluminium continue to burn in the jar of Nitrogen.

These metallic nitrides are warmed with water to produce their respective hydroxides with the liberation of Ammonia gas.

 Ammonia is synthesized from its elements, i.e., Nitrogen and Hydrogen by Haber's process.

$$N_2 + 3H_2 = 2NH_3 + heat$$
Nitrogen Hydrogen Ammonia

Catalyst	Finely divided iron
Promoter	Molybdenum
Temperature	450-500 °C
Atmospheric pressure	200-1000 atmosphere.


 Nitrogen combines with Oxygen at 3000 °C or during thunder and lightning to form Nitric oxide.

$$N_2$$
 + O_2 $\xrightarrow{\text{electric arc}}$ 2NO

Nitrogen Oxygen Nitric oxide

16. Nitrogen reacts with Calcium carbide at 1000 °C to form Nitrolim which is an important fertilizer.

- 17. The molecular formula of Ammonia is NH₃. The relative molecular mass is 17.
- 18. Ammonia is a polar covalent compound.

Electron dot diagram of Ammonia

- 19. Ammonia is found in free state in traces.
- 20. In combined state Ammonia is found in the form of Ammonium salts like Ammonium chloride, Ammonium sulphate etc.
- 21. The smell of Ammonia in toilets is due to the bacterial decomposition of urea present in urine. $NH_2CONH_2 + 2H_2O \longrightarrow 2NH_3 + H_2O + CO_2$

- 22. Preparation of Ammonia: Generally, Ammonia is prepared by the following methods:
 - (a) In laboratory Ammonia is prepared by heating ammonium salts (Except ammonium nitrate) with caustic alkalies like sodium hydroxide, potassium hydroxide or calcium hydroxide. (Fig. 1)

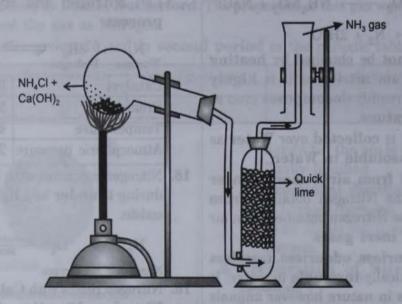


Fig.1: Laboratory preparation of ammonia from ammonium chloride.

- (i) The reactants are finely ground and then taken in a round bottom flask. The round bottom flask is fitted in a slanting position bending in the downward direction.
- (ii) Ammonia is dried by passing over Quick lime, i.e., Calcium oxide. It is not dried by passing through conventional drying agents like conc. Sulphuric acid, anhydrous Calcium chloride, Phosphorus pentaoxide because these drying agents undergo chemical reaction with ammonia.

$$\begin{split} &2\mathrm{NH_3} \, + \, \mathrm{H_2SO_4} \longrightarrow \mathrm{(NH_4)_2SO_4} \\ &\mathrm{CaCl_2} \, + \, 8\mathrm{NH_3} \longrightarrow \mathrm{CaCl_2.8NH_3} \\ &6\mathrm{NH_3} \, + \, 3\mathrm{H_2O} \, + \, \mathrm{P_2O_5} \longrightarrow 2\mathrm{(NH_4)_3PO_4} \end{split}$$

- (iii) Ammonia is collected by downward displacement of air as the gas is lighter than air and highly soluble in water.
- (iv) Ammonium nitrate is not used for the preparation of Ammonia as it is explosive and gives Nitrous oxide and water.

$$NH_4 NO_3 \longrightarrow N_2O + 2H_2O$$

(b) Action of warm water on metallic nitrides (Fig. 2)

Magnesium nitride, Calcium nitride and Aluminium nitride on warming with water produces their respective metallic hydroxide with the liberation of Ammonia.

$$Mg_3N_2 + 6H_2O \xrightarrow{Warm} 3Mg(OH)_2 + 2NH_3$$
 $Ca_3N_2 + 6H_2O \xrightarrow{Warm} 3Ca(OH)_2 + 2NH_3$
 $AlN + 3H_2O \xrightarrow{Warm} Al(OH)_3 + NH_3$

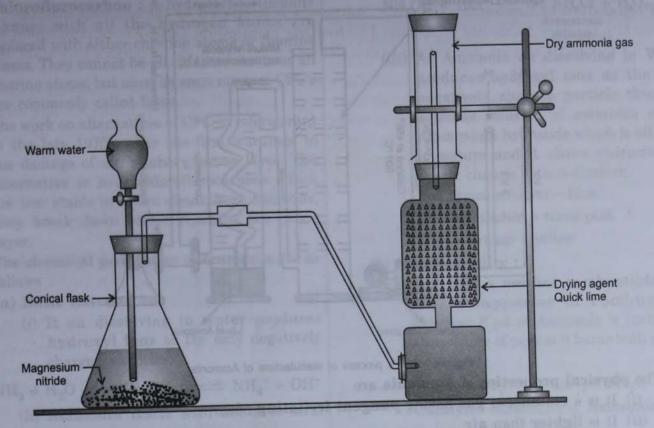


Fig.2. Laboratory preparation of Ammonia gas from Magnesium nitride

(c) Manufacture of Ammonia-Haber's-Process (Fig. 3)

- (i) Ammonia is manufactured by Haber's process. The ratio by volume of Nitrogen and Hydrogen is 1: 3.
- (ii) Nitrogen is obtained by the fractional distillation of liquified air. Hydrogen is obtained by Bosch process.
- (iii) Ammonia is separated from unreacted Nitrogen and Hydrogen by
- (1) Liquifaction: Ammonia can be easily liquified in comparison to Nitrogen and Hydrogen.
- (2) By absorbing Ammonia in water. As Ammonia is highly soluble in water where as Nitrogen and Hydrogen are insoluble in water.
- (iv) The speed of the reaction can be enhanced by taking finely divided iron as the catalyst. The efficiency of a catalyst is increased by using a promoter which is either Molybdenum or Aluminium oxide.

The reaction is reversible and exothermic.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3 + Heat$$

The favourable conditions for the reaction are

Catalyst	Finely divided iron	
Promoter	Molybdenum	
Temperature	450-500 °C	
Atmospheric pressure	200-1000 atm.	

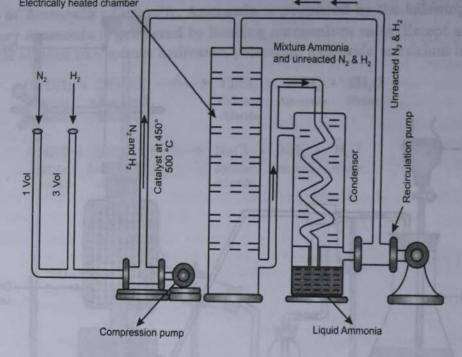


Fig. 3: Haber's process of manufacture of Ammonia.

23. The physical properties of Ammonia are

- (i) It is a colourless gas having pungent irritating odour.
- (ii) It is lighter than air
- (iii) It is highly or extremely soluble in water. The extreme solubility of Ammonia is demonstrated by Fountain's experiment. (Fig. 4)

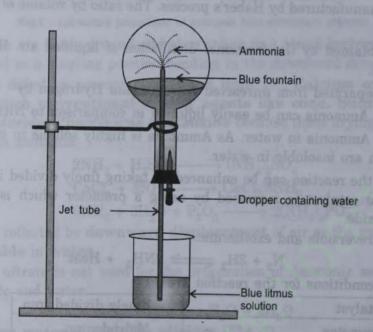


Fig. 4: Fountain experiment to demonstrate extreme solubility of NH3 gas

24. Ammonia is dissolved in water with the help of funnel arrangement so as to prevent back suction of water as the gas is highly soluble in water. Ammonia when dissolved in water produces Ammonium hydroxide which is alkaline in nature.

$$\begin{array}{c} \mathrm{NH_{3} + H_{2}O} & \longrightarrow & \mathrm{NH_{4}OH} \\ & & \mathrm{Ammonium} \\ & & \mathrm{hydroxide} \end{array}$$

$$\mathrm{NH_{4}OH} & \longrightarrow & \mathrm{NH_{4}^{+}} + & \mathrm{OH} \\ & & \mathrm{Ammonium} \\ & & \mathrm{ion} & \mathrm{ion} \end{array}$$

25. Chloroflurocarbon: A hydrocarbon (usually alkane) with all the hydrogen atoms are replaced with either chlorine atoms or fluorine atoms. They cannot be all chlorine atoms or all flourine atoms, but must be some mixture CFC's are commonly called freon.

The work on alternatives of CFC in referigerant in the late 1970's after the first warnings to the damage of stratospheric ozone layer. The alternative is hydrochloroflurocarbons which are less stable in lower atmosphere and thus, they break down before reaching the ozone layer.

26. The chemical properties of Ammonia are as follows:

(a) Basic nature :

(i) It on dissolving in water produces hydroxyl ions as the only negatively charged particles.

$$NH_3 + H_2O \longrightarrow NH_4OH \Longrightarrow NH_4^+ + OH^-$$

(ii) Ammonia reacts with acids to form salts.

nitrate

NH₄OH + HCl
$$\longrightarrow$$
 NH₄Cl + H₂O

Ammonium
chloride

(iii) As Ammonia on dissolving in Water produces hydroxyl ions as the only negatively charged particle thus the aqueous solution of ammonia called Ammonium hydroxide which is alkaline in nature and it shows characteristic colour change with indicators.

Red litmus solution – Blue

Phenolphthalein – turns pink

Methyl orange – yellow

(b) Combustibility:

(i) Ammonia is neither combustible nor it is a supporter of combustion. However if jet of Ammonia is ignited in atmosphere of oxygen it burns with green flame.

$$4\mathrm{NH_3} + 3\mathrm{O_2} \longrightarrow 2\mathrm{N_2} + 6\mathrm{H_2O}$$

(ii) Catalytic oxidation of Ammonia:

Pt = Platinum - catalyst.

(c) Reducing nature of Ammonia:

(i) Ammonia reduces heated metallic oxides to corresponding metals, water vapour and nitrogen (Fig. 5).

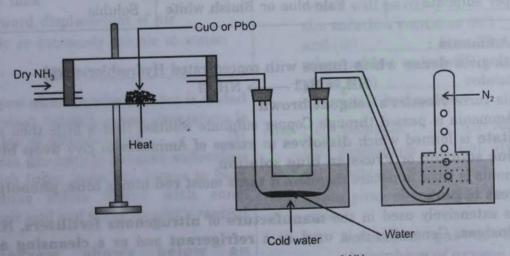


Fig. 5: Showing reducing nature of NH₃

Observations

1. In case of Copper oxide, black Copper oxide on heating changes to pinkish red or reddish brown metal whereas in the case of Lead oxide, yellow Lead oxide changes to greyish white metallic lead.

2. In both the cases, colourless liquid water gets condensed in the U-tube. Water converts anhydrous Copper sulphate from white to blue and anhydrous Cobalt chloride from blue to pink.

3. In both the cases, colourless and odourless gas is collected over water. This gas is nitrogen which does not relight the glowing splinter.

The above experiment proves that Ammonia is made of Nitrogen and Hydrogen and thus, it can be referred to as the hydride of Nitrogen.

 $(ii) \ \ 3\mathrm{CaOCl}_2 + 2\mathrm{NH}_3 \longrightarrow 3\mathrm{CaCl}_2 + \mathrm{N}_2 + 3\mathrm{H}_2\mathrm{O}$

(iii) Reduction of Chlorine:

When Ammonia is in excess: Greenish yellow Chlorine disappears to give dense white fumes of Ammonium chloride.

 $\begin{array}{l} 8\mathrm{NH_3} + 3\mathrm{Cl_2} & \longrightarrow 6\mathrm{NH_4Cl} + \mathrm{N_2} \\ \mathrm{Excess} \end{array}$

When Chlorine is in excess

 $NH_3 + 3Cl_2 \longrightarrow NCl_3 + 3HCl$ Excess

These reactions show that

2. Chlorine has strong affinity for Hydrogen.

(d) Ammonia reacts with Carbon dioxide to form Urea which is a very important nitrogenous fertilizer containing 46.66% of Nitrogen.

$$2NH_3 + CO_2 \xrightarrow{150^{\circ} C} NH_2CONH_2 + H_2O$$

(e) Aqueous solution of Ammonia precipitates metallic hydroxides from their soluble salts.

$$FeCl_3 + 3NH_4OH \longrightarrow Fe(OH)_3 \downarrow + 3NH_4Cl$$
Ferric
hydroxide

(Reddish brown ppt.)

$$FeSO_4 + 2NH_4OH \longrightarrow Fe(OH)_2 + (NH_4)_2SO_4$$
Ferrous hydroxide

(Dirty green ppt.)

$$Pb(NO_3)_2 + 2NH_4OH \longrightarrow Pb(OH)_2 \downarrow + 2NH_4NO_3$$

Lead hydroxide

(White ppt.) $H \longrightarrow Zn(OH) \downarrow + 2NH.N$

$$Zn(NO_3)_2 + 2NH_4OH \longrightarrow Zn(OH)_2 \downarrow + 2NH_4NO_3$$

Zinc hydroxide

 $Zn(OH)_2+4NH_4OH \longrightarrow [Zn(NH_3)_4](OH)_2+4H_2O$

$$\begin{array}{c} \text{Tetraamminezinc hydroxide} \\ \text{CuSO}_4 + 2\text{NH}_4\text{OH} & \longrightarrow \text{Cu(OH)}_2 \downarrow + (\text{NH}_4)_2 \text{SO}_4 \end{array}$$

Copper hydroxide (Pale blue ppt.)

$$Cu(OH)_2 + 4NH_4OH \longrightarrow [Cu(NH_3)_4](OH)_2 + 4H_2O$$

Tetraamminecopper hydroxide

Metallic salt solution	Colour of the ppt (in small quantity)	Nature of ppt (soluble/Insoluble) in excess
(i) Iron (III) chloride	Reddish brown	Insoluble
(ii) Iron (II) sulphate	Dirty green	Insoluble
(iii) Lead nitrate	White	Insoluble
(iv) Zinc nitrate	White	Soluble
(v) Copper sulphate	Pale blue or Bluish white	Soluble

27. Tests for Ammonia:

(a) Ammonia gives dense white fumes with concentrated Hydrochloric acid.

NH₃ + HCl ---- NH₄Cl

(b) Ammonia turns Nessler's reagent brown.

(c) When Ammonia is passed through Copper sulphate solution first a little then a bluish white precipitate is formed which dissolves in excess of Ammonia to give deep blue solution or inky blue solution or Prussian blue solution.

(d) As Ammonia is basic in nature therefore it turns moist red litmus blue, phenolphthalein from

colourless to pink.

28. Ammonia is extensively used in the manufacture of nitrogenous fertilizers, Nitric acid and other explosives. Generally, it is used as a refrigerant and as a cleansing agent (removes grease).

PREVIOUS YEARS' QUESTIONS	ENTREM A THE DESCRIPTION OF THE PROPERTY OF
Q1. Name the gas in the following: The gas produced when excess ammonia reacts with chlorine. Ans.Nitrogen Q2. Some word/words are missing in the following statements. You are required to rewrite the statements in the correct form using the appropriate word/words: Magnesium nitride reacts with warm water to Liberate Ammonia. Ans. Magnesium nitride reacts with warm water to liberate Ammonia. Q3. Give balanced equations for the following reactions: [1]	The gas is alkaline in nature (i) Name the gas collected in jar. (ii) Write balanced equation for the above preparation. (iii) How is gas being collected? (iv) Name the drying agent used. (v) How will you find that the jar is full of gas. [5] Ans. (i) Ammonia (ii) 2NH ₄ Cl + Ca(OH) ₂ $\xrightarrow{\triangle}$ CaCl ₂ + 2H ₂ O+2NH ₃ (iii) Down ward displacement of air (iv) Quick lime or calcium oxide (v) A glass rod dipped in conc. HCl, gives dense white forms.
Ans. $4NH_3 + 5O_2 \xrightarrow{Pt.} 4NO + 6H_2O$. Q4. The following questions are based on the preparation of ammonia gas in the laboratory: (i) Explain why ammonium nitrate is not used in the preparation of ammonia. (ii) Name the compound normally used as a drying agent during the process. (iii) How is ammonia gas collected? (iv) Explain why it is not collected over water. Ans. (i) Ammonium nitrate is explosive (ii) Quick lime (iii) downward displacement of air. (iv) Highly or extremely soluble in water.	Q1. From the list given below, select the word(s) required to correctly complete the blanks (i) to (v) in the following passage: Note: Words chosen from the list are to be used only once. Write only the answers. Do not copy the passage. [reddish brown, ammonium, nitrogen dioxide, hydroxyl, dirty green, ammonia, acidic, alkaline] Nitrogen and hydrogen combine in the presence of a catalyst to give (i) gas. When the above mentioned gas is passed through water it forms a solution which will be (ii) in nature and the solution contains (iii) ions and (iv) ions. The above solution when added to iron(II) sulphate solution,
Q1. What do you observe when water is added to the product formed, when aluminium is burnt in jar of nitrogen gas [1] Ans. A colourless gas having pungent suffocating smell which turns moist red litmus to blue, gives dense white fames with conc. hydrochloric acid and turns Nessler's reagent brown. Q2. The diagram shows below an	gives a (v) coloured precipitate of iron(II) hydroxide. [5] Ans. (i) Ammonia (ii) Alkaline (iii) Ammonium (iv) Hydroxyl (v) Dirty green Q2. State your observation for the following case: [2] (i) Ammonia gas is burnt in an

experimental set up for the laboratory

preparation of pungent smelling gas:

atmosphere of oxygen in the absence

of a catalyst.

(ii) Glass roi	dinned in ammo	nium	2009	
hydroxide of the conc bottle. s. (i) Green flame (ii) Dense white B. Write the equ reaction: Amm with sodium hy s. NH ₄ Cl + NaOH 4. The questions manufacture of (i) Name the p (ii) In what ra taken? (iii) Name the o (iv) Give the manufactur (v) Ammonia agent-write such a react s. (i) Haber's pro (iii) Iron (iv) N ₂ + 3H ₂ = (v) 3CuO + 2N	e fumes action for the following chloride is by droxide. $\stackrel{\Delta}{\longrightarrow} \text{NaCl} + \text{H}_2\text{O} + \text{below are related to ammonia.}$ below are related to ammonia. The contraction for the following constant the reaction for the equation for the equation for the equation is a relevant equation. The fermion of the following constant the related to the equation for the equation is a relevant equation. The fermion of the following constant the following constant the equation is a related to the equation of the equation of the equation is a relevant equation of the equation of t	mouth cacid for the cacid for	rite a fully balanced of clowing case: Magnetic eated with warm water $(g_3N_2 + 6H_2O \xrightarrow{\Delta} 3M_8)$ dentify the substance of formation given: The colid 'Q' is soluble in warm and the colid 'Q' is soluble in warm of the colid 'Q' is soluble in warm	esium nitride is er. [1] g(OH) ₂ + 2NH ₃ Q based on the white crystalline ter. It liberates a hen heated with on. [1] from the choices en ined by adding [1] the following Ind Water [1] H) ₃ + NH ₃
Name of proc	ess Inputs	Catalyst	Equation for catalysed reaction	Output [4]
Haber's Proce	ess Hydrogen +		e Rolgos ek etemo-mai	ens (i) Amno
Name of process	Inputs	Catalyst	Equation for	Output
log o kelde selli de	er (m) brus	reiter	catalysed reaction	Varpat

Ans.

An

An

2007

- Q1. (a) (i) Of the two gases, Ammonia and Hydrogen chloride, which is more dense? Name the method of collection of this gas.
 - (ii) Give one example of a reaction between the above two gases which produces a solid compound.

[3]

- (b) Write a balanced equation for a reaction in which Ammonia is oxidized by:
 - (i) a metal oxide,
 - (ii) a gas which is not Oxygen. [2]
- Ans. (a) (i) Hydrogen chloride gas. It is collected by the upward displacement of air as it is denser than air.
 - (ii) $NH_3 + HCl \longrightarrow NH_4Cl$

174 Together with Chemistry (ICSE) X

- (b) (i) $3\text{CuO} + 2\text{NH}_3 \longrightarrow 3\text{Cu} + \text{N}_2 + 3\text{H}_2\text{O}$ (ii) $8\text{NH}_3 + 3\text{Cl}_2 \longrightarrow 6\text{NH}_4\text{Cl} + \text{N}_2$
- Q2. You enter a laboratory after a class has completed the Fountain experiment. How will you be able to tell whether the gas used in the experiment was Hydrogen chloride or Ammonia?
- Ans. In case of Ammonia the solution in the flask was blue; whereas in Hydrogen chloride gas the solution entering the flask was red.

2006

- Q1. What do you observe when:
 excess of Ammonia is passed through an
 aqueous solution of Lead nitrate? [1]
- Ans. White precipitate appears which is insoluble in excess of Ammonia.
- Q2. (i) Name the substance used for drying Ammonia.
 - (ii) Write an equation to illustrate the reducing nature of Ammonia.
 - (iii) With reference to Haber's process for the preparation of Ammonia, write the equation and the conditions required.

Ans. (i) Calcium oxide or quick lime.

(ii)
$$3\text{CuO} + 2\text{NH}_3 \longrightarrow 3\text{Cu} + \text{N}_2 + 3\text{H}_2\text{O}$$

 $3\text{PbO} + 2\text{NH}_3 \longrightarrow 3\text{Pb} + \text{N}_2 + 3\text{H}_2\text{O}$

(iii) $N_2 + 3H_2 \longrightarrow 2NH_3 + heat$

Catalyst	Iron
Promoter	Molybdenum
Temperature	450 - 500°C
Pressure	200 - 1000 atm

2005

- Q1. (a)(i) Which feature of the Ammonia molecules leads to the formation of Ammonium ion when Ammonia dissolves in Water?
 - (ii) Name the other ion formed when Ammonia dissolves in Water.
 - (iii) Give one test that can be used to detect the presence of the ion produced in (a) (ii). [3]
 - (b) Write the equations for the following reactions which result in the formation of Ammonia:
 - (i) A mixture of Ammonium chloride and Slaked lime is heated.
 - (ii) Aluminium nitride and Water. [2]
- Ans. (a)(i) Nitrogen in Ammonia has a lone pair of electrons which leads to the formation of Ammonium ion.
 - (ii) Hydroxyl ion.
 - (iii) It turns red litmus paper blue.
 - $(b)(i) \quad \text{Ca(OH)}_2 + 2\text{NH}_4\text{Cl} \xrightarrow{\Delta} \text{CaCl}_2 + 2\text{H}_2\text{O} + 2\text{NH}_3$
 - (ii) AlN + $^3H_2O \longrightarrow Al(OH)_3 + NH_3$

IMPORTANT QUESTIONS

Q1. (a) Name one element, in following case, to which the following description would apply:

The burning metal which combines directly with Nitrogen.

- (b) Name the gas that you can obtain in the laboratory from each of the following and write the equation for the reaction taking place in each case:
 - (i) Ammonium nitrite
- (ii) Ammonium chloride
- (c) What CFC's commonly called as?
- Ans. (a) Magnesium, Calcium and Aluminium.
 - (b)(i) NH₄NO₂ \longrightarrow N₂ + 2H₂O (Nitrogen)
 - (ii) $NH_4Cl + NaOH \xrightarrow{\Delta} NaCl + NH_3 + H_2O$ (Ammonia)
 - (c) Freon

- Q2. (a) Write equations for the following reactions:
 - (i) Burning of Ammonia in Oxygen
 - (ii) Catalytic oxidation of Ammonia.
 - (b)(i) What do you see in (a) (i) above?
 - (ii) Name the catalyst used in (a) (ii).
 - (iii) In the reaction referred to in (a) (ii) the catalyst glows red hot, why?
 - (iv) What is the name of the industrial process which starts with the reaction referred to in (a) (ii)?
 - (c)(i) How soluble is Ammonia in water?
 - (ii) Give two reasons to show that the solution of Ammonia in water contains Hydroxide ions.
 - (iii) Name a simple method you would employ to prepare Ammonium salts in your laboratory.

Q3. (a) Name the following:

Two compounds heated together in solution to produce Nitrogen.

(b) What do you observe when:
Ammonia gas is bubbled through red litmus solution.

(c) Explain why the following statement is not correct:

Ammonium salts, on heating, decompose to give ammonia.

(d) Write balanced chemical equations for the following reactions:

(i) Ammonium chloride solution is added to Sodium hydroxide solution.

(ii) Copper sulphate solution is added to Sodium hydroxide solution.

Ans.(a) Ammonium chloride and Sodium nitrite.

(b) It turns blue.

(c) All Ammonium salts, on heating, do not liberate Ammonia as Ammonium nitrate, on heating gives Nitrous oxide.

(d) (i) $NH_4Cl + NaOH \xrightarrow{\Delta} NaCl + H_2O + NH_3$

(ii) CuSO₄ + 2NaOH \longrightarrow Cu(OH)₂ + Na₂SO₄

Q4. Name the gas evolved when the following mixtures are heated:

(i) Calcium hydroxide and Ammonium chloride.

(ii) Sodium nitrite and Ammonium chloride.

Ans. (i) Ammonia

(ii) Nitrogen

Q5. (a) Copy and complete the following equations:

 $(i) \text{ Mg}_3\text{N}_2 + 6\text{H}_2\text{O} \longrightarrow$

(ii) 2NH₃ + 3CuO \longrightarrow

(iii) 8NH₃ + 3Cl₂ \longrightarrow

(iv) 4NH₃ + 50₂ \longrightarrow

(b)(i) How would you obtain compound Magnesium nitride?

(ii) Which property of Ammonia is illustrated by reaction (a) (ii) above?

(iii) What is the name of important industrial process that starts with reaction (a) (iv) above? Name the catalyst used.

(iv) During laboratory preparation how is Ammonia dried and collected?

Ans. (a)(i) Mg₃N₂ + 6H₂O \longrightarrow 3Mg(OH)₂ + 2NH₃

(ii) $2NH_3 + 3CuO \longrightarrow 3Cu + N_2 + 3H_2O$

(iii) $8NH_3 + 3Cl_2 \longrightarrow 6NH_4Cl + N_2$

(iv) 4NH₃ + 5O₂ $\xrightarrow{\text{Pt}}$ 4NO + 6H₂O

(b)(i) By introducing burning Magnesium in the jar of Nitrogen.

(ii) Reducing property.

(iii) Ostwald's process for the manufacture of Nitric acid. The catalyst used is Platinum.

(iv) Ammonia is dried by passing through Quick lime, i.e., Calcium oxide and collected by the downward displacement of air.

Q6. Explain why Ammonia gas is evolved when Water is added to the product formed when Magnesium is burnt in the air.

Ans. When Magnesium is burnt in air, it forms Magnesium nitride which, on warming with water produces Ammonia.

 $\begin{array}{ccc} 3\mathrm{Mg} + \mathrm{N}_2 & \longrightarrow & \mathrm{Mg_3N_2} \\ & \mathrm{Burning} \end{array}$

 $Mg_3N_2 + 6H_2O \xrightarrow{Warm} 3Mg(OH)_2 + 2NH_3$

Q7. Write equations for the laboratory preparation of:
Ammonia from Ammonium chloride.

Ans. $NH_4Cl + NaOH \xrightarrow{\Delta} NaCl + NH_3 + H_2O$

 $2\mathrm{NH_4Cl} + \mathrm{Ca(OH)_2} \xrightarrow{\quad \Delta\quad} \mathrm{CaCl_2} + 2\mathrm{NH_3} + 2\mathrm{H_2O}$

Q8. Using Sodium hydroxide solution, how would you distinguish Ammonium sulphate from Sodium sulphate?

Ans. Ammonium sulphate, on reaction with Sodium hydroxide, produces a colourless gas which turns Nessler's reagent brown and gives dense white fumes with concentrated Hydrochloric acid whereas with Sodium sulphate, there is no reaction.

Q9. Complete and balance the following equations:

(b) $Pb(NO_3)_2 \xrightarrow{heat(\Delta)}$

Ans. (a) $3\text{CuO} + 2\text{NH}_3 \longrightarrow 3\text{Cu} + \text{N}_2 + 3\text{H}_2\text{O}$ (heated)

(b) 2Pb(NO₃)₂ $\xrightarrow{\Delta}$ 2PbO + 4NO₂ + O₂

Q10. (a) Give reasons for the following:

- (i) Though Ammonium nitrite readily gives Nitrogen on heating, a mixture of Ammonium chloride and Sodium nitrite in water is heated to prepare Nitrogen in the laboratory.
- (ii) Ammonia cannot be collected over water.
- (b) Write balanced equations of the reactions in the preparation of: Ammonia from Ammonium chloride.

Ans. (a)(i) Ammonium nitrite cannot be stored even at room temperature, therefore Nitrogen is obtained by heating Ammonium chloride and Sodium nitrite.

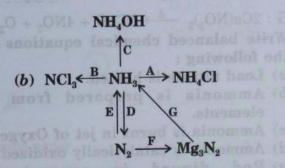
(ii) Ammonia is highly or extremely soluble in water, and therefore, it is not collected over water.

 $(b) \text{ NH}_4\text{Cl} + \text{NaOH} \xrightarrow{\Delta} \text{NaCl} + \text{NH}_3 + \text{H}_2\text{O}$ $\text{Ca(OH)}_2 + 2\text{NH}_4\text{Cl} \xrightarrow{\Delta} \text{CaCl}_2 + 2\text{NH}_3$ $+ 2\text{H}_2\text{O}$

Q11. Name the following:

- (a) The fertilizer formed when Carbon dioxide is reacted with Ammonia.
- (b) The process by which Ammonia is manufactured.
- (c) Two metallic oxides which are reduced by Ammonia.
- (d) Orange compound which on heating erupts with green mass in the form of volcano.
- (e) Two gases which give dense white fumes with Ammonia.
- (f) The solution which turns brown when it comes in contact with Ammonia.

- (g) Drying agent for Ammonia.
- (h) Experiment which demonstrates the extreme solubility of Ammonia.
- (i) Gas obtained when Magnesium nitride is warmed with water.
- (j) Metal which directly combines with Nitrogen on heating.
- (k) Catalyst used during Haber's process.


Ans. (a) Urea.

- (b) Haber's process.
- (c) Copper oxide and Lead oxide.
- (d) Ammonium dichromate.
- (e) Chlorine and Hydrogen chloride gas.
- (f) Nessler's reagent.
- (g) Calcium oxide or Quick lime.
- (h) Fountain experiment.
- (i) Ammonia.
 - (j) Magnesium, Calcium, Aluminium.
 - (k) Finely divided iron.
- Q12. How are the following conversions carried out? Give equations only.

(a)
$$NH_3 \xrightarrow{A} NO \xrightarrow{B} NO_2 \xrightarrow{C} HNO_3$$

$$\downarrow D$$

$$Cu(NO_3)$$

$$(c) \quad NH_4Cl \xrightarrow{A} NH_3 \xrightarrow{C} NH_4OH \xrightarrow{D}$$

$$Cu(NO_3)_2 \xleftarrow{F} CuO \xleftarrow{E} Cu(OH)_2$$

Ans. (a) A: $4NH_3 + 5O_2 \xrightarrow{Pt} 4NO + 6H_2O$ B: $2NO + O_2 \xrightarrow{} 2NO_2$ C: $4NO_2 + 2H_2O + O_2 \xrightarrow{} 4HNO_3$ D: $CuO + 2HNO_3(dil.) \xrightarrow{} Cu(NO_3)_2 + H_2O$

(b) A: $8NH_3 + 3Cl_2 \longrightarrow 6NH_4Cl + N_2$ excess

 $\begin{array}{c} Or \\ \mathrm{NH_3} + \mathrm{HCl} \longrightarrow \mathrm{NH_4Cl} \\ \mathrm{B} : \mathrm{NH_3} + \frac{\mathrm{3Cl_2}}{\mathrm{excess}} \to \mathrm{NCl_3} + \mathrm{3HCl} \end{array}$

 $\begin{array}{c} C: \mathrm{NH_3} + \mathrm{H_2O} \longrightarrow \mathrm{NH_4OH} \\ \mathrm{D}: 4\mathrm{NH_3} + 3\mathrm{O_2} \longrightarrow 2\mathrm{N_2} + 6\mathrm{H_2O} \\ \mathrm{E}: \mathrm{N_2} + 3\mathrm{H_2} & & 2\mathrm{NH_3} + \mathrm{heat} \\ \mathrm{Catalyst} & - & \mathrm{Iron} \\ \mathrm{Promoter} & - & \mathrm{Molybdenum} \\ \mathrm{Temperature} & - & 450-500^{\circ}\mathrm{C} \\ \mathrm{Atmospheric} & - & 200-1000 \ \mathrm{atm} \\ \mathrm{pressure} \end{array}$

 $\label{eq:Gammass} G: \mbox{Mg}_3\mbox{N}_2 + 6\mbox{H}_2\mbox{O} \xrightarrow{\mbox{Warm}} 3\mbox{Mg}(\mbox{OH})_2 + \\ 2\mbox{NH}$

(c)A : NH₄Cl + NaOH $\xrightarrow{\Delta}$ NaCl + H₂O + NH₃ Or

 $\begin{array}{c} 2\mathrm{NH_4Cl} + \mathrm{Ca(OH)_2} \overset{\Delta}{\longrightarrow} \mathrm{CaCl_2} + 2\mathrm{H_2O} + 2\mathrm{NH_3} \\ \mathrm{B}: 8\mathrm{NH_3} + 3\mathrm{Cl_2} \overset{\Delta}{\longrightarrow} 6\mathrm{NH_4Cl} + \mathrm{N_2} \\ Or \end{array}$

 $\begin{array}{c} \mathbf{D}: \, \mathbf{CuSO_4} \, + \, \mathbf{2NH_4OH} \, {\rightarrow} \mathbf{Cu(OH)_2} \, + \\ \qquad \qquad (\mathbf{NH_4})_2 \mathbf{SO_4} \end{array}$

 $\begin{array}{l} E: Cu(OH)_2 \stackrel{\Delta}{\longrightarrow} CuO + H_2O \\ F: CuO + 2HNO_3 (dil.) \longrightarrow Cu(NO_3)_2 + H_2O \end{array}$

 $G: 2Cu(NO_3)_2 \xrightarrow{\Delta} 2CuO + 4NO_2 + O_2$

Q13. Write balanced chemical equations for the following:

(a) Lead nitrate is heated.

- (b) Ammonia is prepared from its elements.
- (c) Ammonia is burnt in jet of Oxygen.
- (d) Ammonia is catalytically oxidized.
- (e) Rod dipped in concentrated Hydrochloric acid is brought in contact with Ammonia.
- (f) Sal ammoniac reacts with slaked lime.
- (g) Chlorine reacts with excess of Ammonia.
- (h) Excess of Chlorine reacts with Ammonia.
- (i) Burning Magnesium strip is introduced in the jar of Nitrogen.
- (j) Magnesium nitride is warmed with Water.
- (k) Nitrogen combines with Oxygen in the presence of electric spark at 3000°C.
- (l) Ammonia is passed over the paste of Bleaching powder.

- (m) Ammonia is passed over heated Copper oxide.
 - (n) Ammonia is passed through conc. Sulphuric acid.
 - (o) Ammonium dichromate is heated.

Ans. (a) $2\text{Pb}(\text{NO}_3)_2 \xrightarrow{\Delta} 2\text{PbO} + 4\text{NO}_2 + \text{O}_2$

(b) $N_2 + 3H_2 = \frac{\text{Fe-Mo}}{450-500^{\circ}\text{C}} 2\text{NH}_3 + \text{heat}$ 200-1000 atm

 $(c)4\mathrm{NH_3} + 3\mathrm{O_2} \longrightarrow 2\mathrm{N_2} + 6\mathrm{H_2O}$

 $(d) 4NH_3 + 5O_2 \xrightarrow{Pt} 4NO + 6H_2O$

(e) NH₃ + HCl(conc.) \longrightarrow NH₄Cl

(f) 2NH₄Cl + Ca(OH)₂ $\xrightarrow{\Delta}$ CaCl₂ + 2NH₃ + 2H₂O

 $\begin{array}{c} (g) \ 8\mathrm{NH_3} + 3\mathrm{Cl_2} \longrightarrow 6\mathrm{NH_4Cl} + \mathrm{N_2} \\ \mathrm{excess} \end{array}$

 $(h) \text{ NH}_3 + \text{ 3Cl}_2 \longrightarrow \text{NCl}_3 + \text{3HCl}$ excess

(i) $3Mg + N_2 \longrightarrow Mg_3N_2$ Burning

(j) Mg₃N₂ + 6H₂O $\xrightarrow{\text{Warm}}$ 3Mg(OH)₂ + 2NH₃

 $(k) \ \ {\rm N_2 \, + \, O_2} \ \ \xrightarrow{\rm electric \, spark \atop 3000^{\circ} \, {\rm C}} \ \ 2{\rm NO}$

 $(l) \ \ 3\text{CaOCl}_2 + 2\text{NH}_3 \longrightarrow 3\text{CaCl}_2 + \text{N}_2 + 3\text{H}_2\text{O}$

(m) 3CuO + 2NH₃ \longrightarrow 3Cu + N₂ + 3H₂O

(n) 2NH₃ + H₂SO₄ \longrightarrow (NH₄)₂SO₄

(o) $(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 + Cr_2O_3 + 4H_2O$

Q14. What do you observe when:

- (a) Ammonia comes in contact with concentrated Hydrochloric acid.
- (b) Ammonia burns in Oxygen.
- (c) Ammonia is passed over heated Copper oxide.
- (d) Ammonium dichromate is heated.

Ans. (a) Dense white fumes are observed.

- (b) Green flame is seen.
- (c) Black coloured Copper oxide changes to Pinkish red metal, a colourless liquid is obtained which turns anhydrous Copper sulphate blue and a colourless, odourless gas is evolved which is neither combustible nor it is a supporter of combustion and does not turn lime water milky.
- (d) On heating Ammonium dichromate, exothermic reaction takes place and the green mass erupts in the form of volcano.

Let's Recall

Fill Your Answer in the Space Given for Each Question.

Q1.	Copy,	complete	and l	balance	the	following	equations:
	STATE OF THE PARTY					-	

(i)	$Mg_3N_2 + H_2O \xrightarrow{\Delta} $,	- Shravil			
(11)	$Ca + N_2 \longrightarrow$						
(iii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3)		(1)			
(v)	$\begin{array}{cccc} \text{CuO} + \text{NH}_3 & \longrightarrow & & \\ \text{NH}_3 + \text{Cl}_2 & \longrightarrow & & \\ \end{array}$	+	Vater produ	lying in W	osaib no nii	omma G	
	Excess						
(vi)	$NH_3 + H_2SO_4 \longrightarrow$	lo amor (b					
(vii)	NaOH + NH ₄ Cl [△]	(A) +				(0)	
(viii)	$NH_3 + HCl \longrightarrow $ $NH_4OH + HNO_3 \longrightarrow $ $NH_4OH + HNO_3 \longrightarrow $	-					
(ix)	$NH_4OH + HNO_3 \longrightarrow $	-20'4,4	,				
	$NH_3 + O_2 \xrightarrow{Pt}$		J				
(xi)	$NH_3 + O_2 \longrightarrow $	$+ H_2O$		(0)			
(xii)	PbO + NH ₃	-+-500	n da shin				
	$NH_3 + Cl_2 \longrightarrow $						
(xiv)	$N_2 + H_2 \longrightarrow$						
ill in	the blanks.						
	Ammonia is dense the		playion to				
	Ammonia is soluble in						
	Dry ammonia has effe						
(v)	Ammonia turns neutral litmus soluti Ammonia is synthesized by	on to	ss. The cat	alyst use		e process	
	divided iron.					Description.	
	Ammonia is not dried by passing three						
(viii)	Ammonia turns reage When ammonia is passed over heated	nt d copper ox	ide the pro	ducts are	M D	HA,HM	Tideo)
	andOS+_H						
	Ammonia gives dense white fumes w					3F50 + 0	
State	whether the following statement	s are True	or raise.				
(i) A	Ammonia is insoluble in Water. Ammonia dissolves in Water to give a	11 1:					
(ii) A	ammonia dissolves in Water to give a	n alkalı.	(iiia) - :	solphuric	finely (mi)	Haber's,	
	Ammonium hydroxide on adding to Fe		7.0				
	Ammonia burns in Oxygen with blue						
(v) A	Ammonia acts as a reducing agent.						

	choose the corre			
(i	i) Liquid ammon(a) basic(c) neutral	ia is	(b) acidic (d) none of these	
Ans.	(a)	(b)	0	d
(i	i) Ammonia disso	olves in Water to give	(5) 8(+ 0	
	(a) Ammonium	hydroxide	(b) Ammonium oxide	
	(c) Ammonium	chloride	(d) none of these	
Ans.	(a)	(b)	0	d
(ii	(i) Ammonia on d	issolving in Water pro	oduces	TO HE HE CL
		n as the positive ion n as the negative ion	(b) hydrogen ion as the(d) none of these	ne positive ion
Ans.	(a)	(b)	(c)	(d)
(it	Drying agent f	or Ammonia is	- CY SHOW	WHI (H) HILL
	(a) CaO		(b) P ₂ O ₅	
	(c) conc. H ₂ SO		(d) HCl	
Ans.	(a)	(b)	0	
) Ammonia gets	catalytically oxidized	to give	(cell), PMO + NH,
	(a) $N_2 + H_2O$		(b) NO ₂ + H ₂ O	
	(c) NO + H ₂ O		(d) Cu	
Ans.	(a)	(b)	(c)	(d)
		Land Land	· Programme appears of	al Klassmath (1)
	Ammonta la	weenered to	NSWERS -	the states to home of
	Americals, is observed.	and in let of Own	NSWERS -	ois a Association of the Company of
		$\stackrel{\Delta}{\longrightarrow} 3Mg(OH)_2 + 2NF$	I_3 (ii) $3Ca + N_2$	and of the first that the same of the first terms are the first terms and the first terms are the first terms and the first terms are the first te
(iii	i) AlN + $3H_2O$ $-\Delta$	$\stackrel{\Delta}{\longrightarrow} 3Mg(OH)_2 + 2NF$ $\stackrel{\Delta}{\longrightarrow} Al(OH)_3 + NH_3$	I_3 (ii) $3Ca + N_2$	
(iii	i) $AlN + 3H_2O \stackrel{\triangle}{\longrightarrow}$ b) $8NH_3 + 3Cl_2 \stackrel{\triangle}{\longrightarrow}$	$\stackrel{\Delta}{\longrightarrow} 3Mg(OH)_2 + 2NF$ $\stackrel{\Delta}{\longrightarrow} Al(OH)_3 + NH_3$	I_3 (ii) $3Ca + N_2$	the first of the second
(iii	i) $AlN + 3H_2O \stackrel{\triangle}{\longrightarrow}$ b) $8NH_3 + 3Cl_2 \stackrel{\triangle}{\longrightarrow}$ Excess	$\stackrel{\Delta}{\longrightarrow} 3Mg(OH)_2 + 2NH$ $\stackrel{\Delta}{\longrightarrow} Al(OH)_3 + NH_3$ $\stackrel{\Delta}{\longrightarrow} 6NH_4Cl + N_2$	H_3 (ii) $3Ca + N_2$ (iv) $3CuO + 2NH_3$	\longrightarrow 3Cu + N ₂ + 3H ₂ O
(iii (i	i) $AlN + 3H_2O \xrightarrow{\Delta}$ b) $8NH_3 + 3Cl_2 \xrightarrow{Excess}$ i) $2NH_3 + H_2SO_4$	$\stackrel{\Delta}{\longrightarrow} 3Mg(OH)_2 + 2NH$ $\stackrel{\Delta}{\longrightarrow} Al(OH)_3 + NH_3$ $\stackrel{\Delta}{\longrightarrow} 6NH_4Cl + N_2$ $\stackrel{(NH_4)_2SO_4}{\longrightarrow}$	H_3 (ii) $3Ca + N_2$ (iv) $3CuO + 2NH_3$ (vii) $NaOH + NH_4O$	$\longrightarrow 3Cu + N_2 + 3H_2O$ $Cl \stackrel{\triangle}{\longrightarrow} NaCl + H_2O + NH_3$
(iii (i (v) (vi	i) $AlN + 3H_2O - \Delta O$ $8NH_3 + 3Cl_2 - O$ Excess i) $2NH_3 + H_2SO_4 - O$ ii) $NH_3 + HCl - O$	$\stackrel{\Delta}{\longrightarrow} 3Mg(OH)_2 + 2NH$ $\stackrel{\Delta}{\longrightarrow} Al(OH)_3 + NH_3$ ${\longrightarrow} 6NH_4Cl + N_2$ ${\longrightarrow} (NH_4)_2SO_4$ ${\longrightarrow} NH_4Cl$	H_3 (ii) $3Ca + N_2$ (iv) $3CuO + 2NH_3$ (vii) $NaOH + NH_4O$ (ix) $NH_4OH + HN$	$\longrightarrow 3Cu + N_2 + 3H_2O$ $Cl \xrightarrow{\Delta} NaCl + H_2O + NH_3$ $O_3 \longrightarrow NH_4NO_3 + H_2O$
(iii (v (vi (si	i) $AlN + 3H_2O - \frac{A}{2}$ i) $8NH_3 + 3Cl_2 - \frac{A}{2}$ Excess i) $2NH_3 + H_2SO_4 - \frac{A}{2}$ ii) $NH_3 + HCl - \frac{A}{2}$ ii) $NH_3 + 4Cl - \frac{A}{2}$ iii) $NH_3 + 4Cl - \frac{A}{2}$	$\stackrel{\Delta}{\longrightarrow} 3Mg(OH)_2 + 2NH$ $\stackrel{\Delta}{\longrightarrow} Al(OH)_3 + NH_3$ $\stackrel{\Delta}{\longrightarrow} 6NH_4Cl + N_2$ $\stackrel{(NH_4)_2SO_4}{\longrightarrow}$	H_3 (ii) $3Ca + N_2$ — (iv) $3CuO + 2NH_3$ (vii) $NaOH + NH_4O$ (ix) $NH_4OH + HN$ (xi) $4NH_3 + 3O_2$ — (xiii) $NH_3 + 3Cl_2$ —	$\longrightarrow 3Cu + N_2 + 3H_2O$ $Cl \xrightarrow{\Delta} NaCl + H_2O + NH_3$ $O_3 NH_4NO_3 + H_2O$ $\longrightarrow 2N_2 + 6H_2O$
(iii (v (vi (xi	i) $AlN + 3H_2O - \frac{A}{2}$ ii) $8NH_3 + 3Cl_2 - \frac{A}{2}$ Excess ii) $2NH_3 + H_2SO_4 - \frac{A}{2}$ iii) $NH_3 + HCl - \frac{A}{2}$ iii) $4NH_3 + 5O_2 - \frac{A}{2}$ iii) $3PbO + 2NH_3 - \frac{A}{2}$	$\stackrel{\Delta}{\longrightarrow} 3Mg(OH)_2 + 2NH$ $\stackrel{\Delta}{\longrightarrow} Al(OH)_3 + NH_3$ ${\longrightarrow} 6NH_4Cl + N_2$ ${\longrightarrow} (NH_4)_2SO_4$ $\stackrel{Pt}{\longrightarrow} NH_4Cl$ $\stackrel{Pt}{\longrightarrow} 4NO + 6H_2O$ $\stackrel{Pt}{\longrightarrow} 3Pb + N_2 + 3H_2O$	H_3 (ii) $3Ca + N_2$ (iv) $3CuO + 2NH_3$ (vii) $NaOH + NH_4O$ (ix) $NH_4OH + HN$ (xi) $4NH_3 + 3O_2$ —	$\longrightarrow 3Cu + N_2 + 3H_2O$ $Cl \xrightarrow{\Delta} NaCl + H_2O + NH_3$ $O_3 NH_4NO_3 + H_2O$ $\longrightarrow 2N_2 + 6H_2O$
(iii (v) (vi (xi (xi	i) $AlN + 3H_2O - 4$ ii) $8NH_3 + 3Cl_2 - 4$ Excess ii) $2NH_3 + H_2SO_4 - 4$ iii) $NH_3 + HCl - 4$ iii) $3PbO + 2NH_3 - 4$ iii) $3PbO + 2NH_3 - 4$ iv) $N_2 + 3H_2 - 4$	$\stackrel{\Delta}{\longrightarrow} 3Mg(OH)_2 + 2NH$ $\stackrel{\Delta}{\longrightarrow} Al(OH)_3 + NH_3$ ${\longrightarrow} 6NH_4Cl + N_2$ ${\longrightarrow} (NH_4)_2SO_4$ $\stackrel{Pt}{\longrightarrow} 4NO + 6H_2O$ $\stackrel{Pt}{\longrightarrow} 3Pb + N_2 + 3H_2O$ $\stackrel{\Delta}{\longrightarrow} 2NH_3$	H_3 (ii) $3Ca + N_2$ — (iv) $3CuO + 2NH_3$ (vii) $NaOH + NH_4O$ (ix) $NH_4OH + HN$ (xi) $4NH_3 + 3O_2$ — (xiii) $NH_3 + 3Cl_2$ — excess	$\longrightarrow 3Cu + N_2 + 3H_2O$ $Cl \xrightarrow{\Delta} NaCl + H_2O + NH_3$ $O_3 NH_4NO_3 + H_2O$ $\longrightarrow 2N_2 + 6H_2O$
(iii (vi (vi (xi (xi 2. (i) $AlN + 3H_2O - 4$ ii) $8NH_3 + 3Cl_2 - 4$ Excess ii) $2NH_3 + H_2SO_4 - 4$ iii) $NH_3 + HCl - 4$ iii) $3PbO + 2NH_3 - 4$ iii) $3PbO + 2NH_3 - 4$ iv) $N_2 + 3H_2 - 4$	$ \stackrel{\triangle}{\longrightarrow} 3Mg(OH)_2 + 2NH $ $ \stackrel{\triangle}{\longrightarrow} Al(OH)_3 + NH_3 $ $ \stackrel{\longrightarrow}{\longrightarrow} 6NH_4Cl + N_2 $ $ \stackrel{\longrightarrow}{\longrightarrow} (NH_4)_2SO_4 $ $ \stackrel{Pt}{\longrightarrow} NH_4Cl $ $ \stackrel{Pt}{\longrightarrow} 4NO + 6H_2O $ $ \stackrel{Pt}{\longrightarrow} 3Pb + N_2 + 3H_2O $ $ \stackrel{\longrightarrow}{\longrightarrow} 2NH_3 $ $ (ii) not $	H_3 (ii) $3Ca + N_2$ (iv) $3CuO + 2NH_3$ (vii) $NaOH + NH_4O$ (ix) $NH_4OH + HN$ (xi) $4NH_3 + 3O_2$ (xiii) $NH_3 + 3Cl_2$ excess (iii) highly (iv) I	$\longrightarrow 3Cu + N_2 + 3H_2O$ $Cl \stackrel{\Delta}{\longrightarrow} NaCl + H_2O + NH_3$ $O_3 {\longrightarrow} NH_4NO_3 + H_2O$ $\longrightarrow 2N_2 + 6H_2O$ $\longrightarrow NCl_3 + 3HCl$
(iii (v) (vi (xi (xi 2. (v)	i) $AlN + 3H_2O - 4$ ii) $8NH_3 + 3Cl_2 - 4$ Excess ii) $2NH_3 + H_2SO_4 - 4$ iii) $NH_3 + HCl - 4$ iii) $3PbO + 2NH_3 - 4$ iii) $3PbO + 2NH_3 - 4$ iii) $3PbO + 2NH_3 - 4$ iii) $3PbO + 3H_2 - 4$ iii) $3PbO + 3H_2 - 4$ iii) $3PbO + 3H_2 - 4$	$\stackrel{\Delta}{\longrightarrow} 3 \text{Mg}(\text{OH})_2 + 2 \text{NH}$ $\stackrel{\Delta}{\longrightarrow} \text{Al}(\text{OH})_3 + \text{NH}_3$ ${\longrightarrow} 6 \text{NH}_4 \text{Cl} + \text{N}_2$ ${\longrightarrow} (\text{NH}_4)_2 \text{SO}_4$ ${\longrightarrow} \text{NH}_4 \text{Cl}$ $\stackrel{\text{Pt}}{\longrightarrow} 4 \text{NO} + 6 \text{H}_2 \text{O}$ ${\longrightarrow} 3 \text{Pb} + \text{N}_2 + 3 \text{H}_2 \text{O}$ ${\longrightarrow} 2 \text{NH}_3$ (ii) not (vii) sulphuric (vii) sulphuric (gen chloride gas.	(ii) 3Ca + N ₂ (iv) 3CuO + 2NH ₃ (vii) NaOH + NH ₄ O (ix) NH ₄ OH + HN (xi) 4NH ₃ + 3O ₂ (xiii) NH ₃ + 3Cl ₂ excess (iii) highly (iv) residue (iv) residue (iv) Nessler's, brown (iv)	$\longrightarrow 3\text{Cu} + \text{N}_2 + 3\text{H}_2\text{O}$ $\text{Cl} \stackrel{\triangle}{\longrightarrow} \text{NaCl} + \text{H}_2\text{O} + \text{NH}_3$ $\text{O}_3 \longrightarrow \text{NH}_4\text{NO}_3 + \text{H}_2\text{O}$ $\longrightarrow 2\text{N}_2 + 6\text{H}_2\text{O}$ $\longrightarrow \text{NCl}_3 + 3\text{HCl}$ $\text{no} \qquad (v) \text{blue}$ $\text{ix) copper, water, nitrogen}$
(iii (v) (vi (xi (xi 2. (v)	i) $AlN + 3H_2O - 4$ ii) $8NH_3 + 3Cl_2 - 4$ Excess ii) $2NH_3 + H_2SO_4 - 4$ iii) $NH_3 + HCl - 4$ iii) $3PbO + 2NH_3 - 4$ iii) $3PbO + 2NH_3 - 4$ iii) 1 iv) 1	$\stackrel{\Delta}{\longrightarrow} 3 \text{Mg}(\text{OH})_2 + 2 \text{NH}$ $\stackrel{\Delta}{\longrightarrow} \text{Al}(\text{OH})_3 + \text{NH}_3$ ${\longrightarrow} 6 \text{NH}_4 \text{Cl} + \text{N}_2$ ${\longrightarrow} (\text{NH}_4)_2 \text{SO}_4$ ${\longrightarrow} \text{NH}_4 \text{Cl}$ $\stackrel{\text{Pt}}{\longrightarrow} 4 \text{NO} + 6 \text{H}_2 \text{O}$ ${\longrightarrow} 3 \text{Pb} + \text{N}_2 + 3 \text{H}_2 \text{O}$ ${\longrightarrow} 2 \text{NH}_3$ (ii) not (vii) sulphuric (vii) sulphuric (gen chloride gas.	(ii) 3Ca + N ₂ (iv) 3CuO + 2NH ₃ (vii) NaOH + NH ₄ O (ix) NH ₄ OH + HN (xi) 4NH ₃ + 3O ₂ (xiii) NH ₃ + 3Cl ₂ excess (iii) highly (iv) residue (iv) residue (iv) Nessler's, brown (iv)	$\longrightarrow 3\text{Cu} + \text{N}_2 + 3\text{H}_2\text{O}$ $\text{Cl} \stackrel{\Delta}{\longrightarrow} \text{NaCl} + \text{H}_2\text{O} + \text{NH}_3$ $\text{O}_3 \longrightarrow \text{NH}_4\text{NO}_3 + \text{H}_2\text{O}$ $\longrightarrow 2\text{N}_2 + 6\text{H}_2\text{O}$ $\longrightarrow \text{NCl}_3 + 3\text{HCl}$ $\text{no} \qquad (v) \text{blue}$

(ii) Ammonia mixes with Hydrogen chloride gas

(iii) Ammonia is passed through Copper sulphate solution in excess

(iv) Ammonium hydroxide is added to Ferric chloride solution